首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamic mechanical properties of A‐glass bead filled polypropylene (PP)/ethylene–propylene–diene monomers polymer (EPDM) ternary composites have been measured over a temperature range from −80 °C to 100 °C and at a fixed frequency of 1 Hz, using a dynamic mechanical analyser (DMA), to identify the effects of the filler content and its surface treatment with a silane coupling agent on the dynamic viscoelastic behaviour. The results show that the storage modulus (Ec) and loss modulus (Ec) of these composites with 10% volume fraction of EPDM at 25 °C increase non‐linearly with increasing volume fraction of glass beads (ϕg). At the same test conditions, the Ec value of the PP/EPDM filled with pretreated glass beads is higher than that of the uncoated glass bead filled PP/EPDM system, especially at higher ϕg, while the difference in Ec between both systems is very small. The mechanical damping for the former decreases with increasing ϕg, but the opposite is true for the latter. The glass transition temperature of these composites varies irregularly with ϕg. The dynamic complex viscosity increases nonlinearly with an increase of ϕg. In addition, the interfacial structure between the matrix and inclusions has been observed by means of a scanning electron microscope. © 1999 Society of Chemical Industry  相似文献   

2.
The tensile properties of polypropylene (PP) filled with two A‐glass beads with the same size, PP/3000 (glass bead surface pretreated with a silane coupling agent) and PP/3000U (no surface pretreatment), have been measured by using an Instron materials testing machine at room temperature, to identify the effects of the filler surface pretreatment and its content on the tensile properties of these composites. The results show that the Young's modulus Ec of the composites increases non‐linearly with increasing volume fraction of glass beads ϕf, while the tensile yield strength σyc and tensile stress at break σbc of the composites decrease with an increase of ϕf, in the ϕf range 0–30%. Furthermore, the values of Ec and σbc of the PP/3000 system are somewhat higher than those of the PP/3000U system under the same test conditions, but this is in contrast to the tensile strain at break εbc and tensile fracture energy Ebc, especially at higher ϕf values. Good agreement is shown between the measured tensile strength and the predicted value by using an equation proposed in previous work. In addition, εbc and Ebc reach maximum values at ϕf = 25% for both systems. This indicates that there is a brittle–ductile transition for the composites in tension. © 2000 Society of Chemical Industry  相似文献   

3.
The effects of glass bead filler content and surface treatment of the glass with a silane coupling agent on the room temperature impact fracture behavior of polypropylene (PP)/ethylene‐propylene‐diene monomer copolymer (EPDM)/glass bead(GB) ternary composites were determined. The volume fraction of EPDM was kept constant at 10%. The impact fracture energy and impact strength of the composites increased with increasing volume fraction of glass beads (?g). Surface pretreatment of the glass beads had an insignificant effect on the impact behavior. For a fixed filler content, the best impact strength was achieved when untreated glass beads and a maleic anhydride modified EPDM were used. The impact strength exhibited a maximum value at ?g=15%. Morphology/impact property relationships and an explanation of the toughening mechanisms were developed by comparing the impact properties with scanning electron micrographs of fracture surfaces.  相似文献   

4.
Hong Yang 《Polymer》2007,48(3):860-869
As a part of long-term project aimed at super polyolefin blends, in this work, we report the toughness and phase morphology of polypropylene (PP)/EPDM/SiO2 ternary composites. Two processing methods were employed to prepare PP/elastomer/filler ternary composites. One was called one-step processing method, in which the elastomer and the filler directly melt blended with PP matrix. Another one was called two-step processing method, in which the elastomer and the filler were mixed first, and then melt blended with pure PP. Two kinds of PP (grafted without or with maleic anhydride (PP-g-MA)) and SiO2 (treated with or without coupling agent) were used to control the interfacial interaction among the components. The dependence of the phase morphology on interfacial interaction and processing method was investigated. It was found that the formation of filler-network structure could be a key for a simultaneous enhancement of toughness and modulus of PP and its formation seemed to be dependent on the work of adhesion (WAB) and processing method. As the WAB of PP/EPDM interface was much lower than that of PP/SiO2 and EPDM/SiO2, and the two-step processing method was used, the formation of filler-network structure was favorable. In this case, a super toughened PP ternary composite with the Izod impact strength 2-3 times higher than PP/EPDM binary blend and 15-20 times higher than pure PP could be achieved.  相似文献   

5.
Polypropylene (PP)/nylon 11/maleated ethylene‐propylene‐diene rubber (EPDM‐g‐MAH) ternary polymer blends were prepared via melt blending in a corotating twin‐screw extruder. The effect of nylon 11 and EPDM‐g‐MAH on the phase morphology and mechanical properties was investigated. Scanning electron microscopy observation revealed that there was apparent phase separation for PP/EPDM‐g‐MAH binary blends at the level of 10 wt % maleated elastomer. For the PP/nylon 11/EPDM‐g‐MAH ternary blends, the dispersed phase morphology of the maleated elastomer was hardly affected by the addition of nylon 11, whereas the reduced dispersed phase domains of nylon 11 were observed with the increasing maleated elastomer loading. Furthermore, a core‐shell structure, in which nylon 11 as a rigid core was surrounded by a soft EPDM‐g‐MAH shell, was formed in the case of 10 wt % nylon 11 and higher EPDM‐g‐MAH concentration. In general, the results of mechanical property measurement showed that the ternary blends exhibited inferior tensile strength in comparison with the PP matrix, but superior toughness. Especially low‐temperature impact strength was obtained. The toughening mechanism was discussed with reference to the phase morphology. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
This study investigates the mechanical properties of wood-fiber/toughened PP composite modified by physical blending with an EPDM rubber to improve impact toughness. Wood-fiber thermoplastic composites were prepared with a modified PP matrix resin, employing high shear thermokinetic compounding aided with maleated PP for the fiber dispersion. The addition of EPDM improved the impact toughness, while it reduced stiffness and strength properties. To compensate the non-plane strain fracture toughness, the specimen strength ratio (Rsb) was adopted as a comparative measure of fracture toughness. The strength ratio increased with the addition of EPDM, while it decreased with increasing wood-fiber concentration. The work of fracture increased with EPDM level except at large wood-fiber concentration. The effectiveness of the impact modification was assessed with the balance between tensile modulus and unnotched impact energy as a function of wood-fiber concentration. EPDM rubber modification was moderately effective for wood-fiber PP composites. The examination of fracture surfaces showed twisted fibers, fiber breakage, and fiber pull-out from the matrix resin.  相似文献   

7.
The ternary composites of coal gangue powder encapsulated by ethylene propylene diene monomer (EPDM) filled polypropylene (PP) were prepared to reduce the cost and control the microstructure aiming at high performance cost ratio materials. The result showed that EPDM can not only enhance the interaction between coal gangue powder and the matrix but also promote the dispersion of coal gangue powder. With the addition of coal gangue encapsulated by EPDM, the impact strength of composition dropped greatly, but it still kept about 11 kJ/m2 when the content of encapsulated coal gangue powder is more than 18 wt%. The tensile strength and fracture toughness (we) also dropped with the addition of encapsulated coal gangue powder, but only a small drop occurred when the content of encapsulated coal gangue powder is less than 18 wt% and great drop emerged when the content is larger than 18 wt%. Compared with coal gangue powder/PP binary composition, the ternary compositions involve higher content of coal gangue powder but present better properties. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

8.
The fracture mechanics investigation of the polypropylene (PP)/ethylene–propylene–diene terpolymer (EPDM)/ionomer ternary blends was performed in terms of the J-integral by measuring fracture energy via the locus method. Blends were prepared in a laboratory internal mixer. The composition of PP and EPDM was fixed at a 50/50 ratio by weight. Two kinds of Poly(ethylene-co-methacrylic acid) (EMA) ionomers were used. The J-integral value at crack initiation, Jc, of the PP/EPDM/EMA ionomer ternary blends were affected by the cation types (Na+ or Zn2+) and contents (5–20 wt %) of the added EMA ionomers. The ternary blend having 5 wt % of Na-neutralized ionomer showed a higher Jc value than that of any other ternary blends. The results were discussed with regard to the fracture topology by a scanning electron microscope (SEM). © 1994 John Wiley & Sons, Inc.  相似文献   

9.
Steady‐ and oscillatory‐shear rheological behaviors of polypropylene/glass bead (PP/GB) and PP/wollastonite (PP/W) melts modified with thermoplastic elastomers, poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) copolymer (SEBS) and the corresponding block copolymer grafted with maleic anhydride (SEBS‐g‐MA), were examined by means of a parallel‐plate rheometer. With adding the elastomers (SEBS and SEBS‐g‐MA) and fillers (spherical GB and acicular W) to PP, viscosity especially at low shear rates and shear‐thinning flow behavior at high shear rates were pronounced as evidenced quantitatively by Carreau–Yasuda (CY) parameters, but Cox–Merz analogy became weakened. Besides, melt‐elasticity in terminal region and relaxation time (tc) in crossing point increased, indicating an enhancement in quasi‐solid behavior of molten PP. Comparing with the elastomers, rheological behaviors of molten PP were more influenced with adding the rigid fillers, especially with W due to distinct acicular shape of W particles. SEBS‐g‐MA elastomer more affected rheological behaviors of the ternary composites than SEBS elastomer, implying that SEBS elastomer and the filler particles behaved individually (i.e., development of separate microstructure) in (PP/GB)/SEBS and (PP/W)/SEBS ternary composites, but core‐shell microstructure developed with strong interfacial adhesion by adding SEBS‐g‐MA elastomer, and the filler particles encapsulated with the thick SEBS‐g‐MA elastomer interlayer (i.e., core‐shell particles) acted like neither big elastomer particles nor like individual rigid particles in melt‐state. Moreover, effects of SEBS‐g‐MA elastomer reached a maximum on rheological behaviors of (PP/W)/SEBS‐g‐MA ternary composite, indicating a synergy between core‐shell microstructure and acicular W particles. Correlations between oscillatory‐shear flow properties and microstructures of the blends and composites were evaluated using Cole–Cole (CC), Han–Chuang (HC), and van Gurp–Palmen (vGP) plots. COMPOS., 2012. © 2012 Society of Plastics  相似文献   

10.
Ethene/propene terpolymers containing either 1‐vinylcylohexene‐4 (VCHen) or vinylcyclohexane (VCHan) as termonomer component were prepared using MAO‐activated rac‐Me2Si(2‐MeBenz[e]Ind)2ZrCl2 (MBI). Propene content was varied between 26 and 72 wt.‐% with less than 1 mol‐% termonomer incorporation. Blends containing 85 vol.‐% isotactic polypropene (i‐PP) and 15 vol.‐% of the two EP terpolymer families were prepared by melt‐compounding in a twin‐screw kneader at 200°C to examine the role of sulfur‐mediated crosslinking of the unsaturated EPDM terpolymer phase in comparison to the corresponding blends containing non‐crosslinked saturated EP/VCHan terpolymers. The observed glass temperature (Tg) depression of the Tg of EP(D)M phases with respect to the Tg of the corresponding bulk EP(D)M was attributed to the presence of thermally induced stresses in both blend systems. Blends of i‐PP with crosslinked EPDM showed smaller Tg depression with respect to those of iPP/EPM blends containing non‐crosslinked EP and EPM dispersed phases. Morphology differences were detected for i‐PP/EPM and dynamically vulcanized i‐PP/EPDM blends by means of atomic force microscopy (AFM). The crosslinked i‐PP/EPDM blends exhibited significantly improved low temperature toughness as compared to the corresponding non‐crosslinked i‐PP/EPM blends. Curing of the EPDM elastomer phase in i‐PP/EPDM (85 vol.‐%/15 vol.‐%) blends afforded significantly improved toughness/stiffness balance and a wider toughness window with respect to the corresponding i‐PP/EPM and i‐PP/EP blends without sulfur‐cured rubber phases.  相似文献   

11.
To identify effects of glass bead (GB) content on the dynamic mechanical properties of filled low‐density‐polyethylene (LDPE) composites, the storage modulus, loss modulus, glass transition temperature, and mechanical damping of these composites were measured using a Du Pont dynamical mechanical analysis instrument in temperature range from ?150 to 100°C. It was found that the storage modulus increased nonlinearly with an increase of the GB volume fraction. On the basis of Eshelby's method and Mori's work, an equation describing the relationship between the relative storage modulus (ER) and filler volume fraction for polymeric composites was proposed, and the ER of LDPE/GB composites were estimated by means of this equation at temperatures of ?25, 0, and 25°C, and the calculations were compared with the experimental data, good agreement was showed between the predictions and the measured data. Furthermore, this equation was verified by the experimental from Al(OH)3 filled EPDM composites at glassy state reported in a reference. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Uncompatibilized and compatibilized (polypropylene grafted maleic anhydride as compatibilizer) polyethylene terephthalate (PET)/polypropylene (PP)/TiO2 microfibrillar composites (MFC) were prepared by injection molding of the pelletized PET/PP/TiO2 drawn strands. The morphology of PET fibrils and the distribution of TiO2 particles in the composites were examined. After injection molding the preferential location of TiO2 particles is still preserved. Because of the reinforcement effect of PET fibrils, the tensile properties and impact strength of the PET/PP MFC are improved compared with the pure PP. Incorporation of TiO2 particles results in decrease of both tensile strength and impact strength of the composites. However, the compatibilized PET/PP/TiO2 MFC demonstrate better mechanical properties compared with the uncompatibilized ones. DMA analysis shows that the glass transition temperature (Tg) of PET in the uncompatibilized PET/PP/TiO2 MFC and the Tg of PP in the compatibilized PET/PP/TiO2 MFC are elevated by about 2°C. The elevation of Tg is attributed to the preferential location of TiO2 particles in the composites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
We have investigated the mechanical and morphological properties of un‐vulcanized and dynamically vulcanized ethylene propylene diene terpolymer/polypropylene (EPDM/PP) thermoplastic elastomers prepared under various processing conditions and possessing various compositions. After melt‐blending EPDM and PP resins twice in a twin‐screw extruder, the values of tensile strength (σf) of the un‐vulcanized EPDM/PP samples were at most equal to that of the pure EPDM specimen, but were much lower than those of the pure PP specimens. The elongations at break (εf) of the un‐vulcanized EPDM/PP samples were, however, dramatically higher than those of their respective virgin PP resins, and they improved significantly upon increasing the shear viscosity (ηs) of the PP resins. The tensile properties of the dynamically vulcanized EPDM/PP samples were significantly better than those of the corresponding un‐vulcanized EPDM/PP specimens. Similar to the behavior of the un‐vulcanized EPDM/PP specimens, the tensile properties of the dynamically vulcanized EPDM/PP specimens were optimized when prepared at a screw rate of 115 rpm. Morphological analysis revealed that the un‐vulcanized and dynamically vulcanized EPDM/PP specimens both featured many EPDM domains finely dispersed in continuous PP matrices. Such domains were present on the surfaces of the dynamically vulcanized EPDM/PP specimens; the relative sizes of the vulcanized EPDM domains were minimized when the vulcanized EPDM/PP specimens were prepared at the optimal screw rate (115 rpm). In fact, under these conditions, the average sizes of the vulcanized EPDM domains decreased upon increasing the values of ηs of the PP resins used to prepare the vulcanized EPDM/PP specimens. To understand these interesting tensile and morphological properties of the un‐vulcanized and dynamically vulcanized EPDM/PP specimens, we measured the rheological properties of the base polymers and performed energy‐dispersive x‐ray (EDX) analyzes of the compositions of the un‐vulcanized and dynamically vulcanized EPDM/PP specimens. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
The average concentrations of negative air ions (Cion?) emitted from tourmaline (T), bamboo charcoal (B) particles, and tourmaline/bamboo charcoal (T/B) compounds containing polypropylene (PP) and ethylene propylene diene terpolymer/polypropylene (EPDM/PP) composite specimens under varying testing conditions were investigated in this study. The Cion? values emitted from T or B filled PP and EPDM/PP composite specimens reached a maximum value as their T or B contents approached the 5 and 3 wt % optimum values, respectively. In contrast, the Cion? values of T/B compounds filled PP and EPDM/PP composite specimens were significantly higher than their theoretical Cion? values estimated using the “simple mixing rule,” and reached a maximum value as the weight ratio of T to B reaches an optimum value. At this optimum T/B weight ratio, the Cion? values of T/B compounds filled PP and EPDM/PP composite specimens reached another maximum as their total compound loadings reached the optimum loading of 6 and 4 wt %, respectively. The Cion? values of the PP/T/B and EPDM/PP/T/B specimens increased significantly as they were tested under dynamic mode or by increasing the testing temperatures. The T and/or T/B powders filled PP and EPDM/PP specimens exhibited significantly higher tensile strength (σf) and elongation at break (εf) values than did the B filled PP and EPDM/PP specimens with the same filler loadings, respectively. Energy dispersive X‐rays, particle size, and SEM morphology analysis of the filler particles present in the T, B, and T/B filled composite specimens were performed to understand these interesting negative air ion and tensile properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
The structure development, rheological behavior, viscoelastic, and mechanical properties of dynamically cured blend based on the ethylene–propylene–diene terpolymer (EPDM) and polypropylene (PP) with a ratio of 60/40 by weight were studied. The variation of two‐phase morphology was observed and compared as the level of curing agent was increased. Meanwhile, as the level of curing agent increased, viscosity as a function of shear stress always increased at a shear stress range of 2.2 × 104 to 3.4 × 105 Pa at the temperature of 200°C, yet viscosity of the blend approached each other at high shear stress. Dynamic mechanical spectra at different temperatures show that dynamic modulus (E′) of the blend exhibits two drastic transitions corresponding to glass transition temperature (Tg) of EPDM and Tg of PP, respectively. In the blends Tgs of EPDM increase and Tgs of PP almost remain unchangeable with an increase in curing agent level. Tensile strength increased, yet elongation at break decreased as the level of curing agent is increased. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 357–362, 2004  相似文献   

16.
The rheological and tensile properties and the morphology of polypropylene (PP)/ethylenepropylene-diene terpolymer(EPDM)/ionomer ternary blends were investigated, using a rheometric dynamic spectrometer (RDS), a dynamic mechanical thermal analyzer (DMTA), a tensile tester, and a scanning electron microscope (SEM). Two kinds of poly(ethylene-co-methacrylic acid) (EMA) ionomers, neutralized with different metal ions (Na+ and Zn++), were used. Blends were melt-mixed, using a laboratory internal mixer at 190°C. The composition of PP and EPDM was fixed at 50/50 by wt % and the EMA ionomer contents were varied from 5 to 20 wt %, based on the total amount of PP and EPDM. It was found that the ternary blends, containing Na-neutralized ionomer, showed considerably different rheological properties and morphology as compared to the PP/EPDM binary blends, due to the compatibilizing effect of the ionomer for PP and EPDM, while the ternary blends, containing the Zn-neutralized ionomer, did not. The compatibilizing effect was most prominent at 5 wt % ionomer concentration. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
The effect of partial replacement of silica or calcium carbonate (CaCO3) by halloysite nanotubes (HNTs) on the curing behavior, tensile properties, dynamic mechanical properties, and morphological characteristics of ethylene propylene diene monomer (EPDM) composites was studied. Five different compositions of EPDM/Silica/HNT and EPDM/CaCO3/HNT compounds (i.e. 100/30/0, 100/25/5, 100/15/15, 100/5/25, and 100/0/30 parts per hundred rubber (phr)) were prepared on a two‐roll mill. The results indicated that the replacement of CaCO3 by HNTs increased the tensile strength, elongation at break (Eb), and tensile modulus of composites from 0 to 30 phr of HNTs whereas for silica, the maximum tensile strength and Eb occurred at 5 phr loading of HNTs with an enhanced stress at 300% elongation (M300). The curing results show that, with replacement of silica or CaCO3 by HNTs, the cure time (t90) and cure rate (CRI) were decreased and increased, respectively. Scanning electron microscopy investigation confirmed that co‐incorporation of 5 phr of HNTs with silica would improve the dispersion of silica and enhanced the interactions between fillers and EPDM matrix. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
肖岩  曹文  杜荣昵  傅强 《塑料工业》2004,32(12):11-13,18
研究了PP/EPDM/纳米弹性体粒子(ENP)三元共混体系的脆韧转变行为。结果表明,与PP/EPDM二元共混物相比,三元共混物的脆韧转变可以在EPDM质量分数较低的情况下发生;在橡胶总质量分数相同的情况下,三元共混物有更高的冲击强度,拉伸强度有一定提高。从脆断样条的扫描电镜照片观察到,在相同EPDM质量分数下,PP/EPDM/ENP三元共混物中的EPDM粒子明显细化,分布均一,粒子间距减小,这是脆韧转变提前的原因。  相似文献   

19.
Because of the poor impact behavior of polypropylene (PP) at low temperatures, the blending of PP with metallocene‐polymerized polyethylene (mPE) elastomers was investigated in this study. However, a reduced modulus of the overall blend was inevitable because of the addition to elastomers. To obtain a balance of the properties, we introduced rigid inorganic fillers to PP/mPE blends. The performance of the composites was characterized with tensile and Charpy notched impact tests, and the fracture morphology was examined with scanning electron microscopy. The results showed that the effects of fillers in a brittle matrix and in a ductile matrix were quantitatively different. For PP/mPE/filler ternary composites, the dependence of Young's modulus and yield strength on CaCO3 content was not significant compared with that of PP/filler binary composites, whereas the elongation at break and tensile toughness at room temperature for PP/mPE/filler systems were more improved. The impact strength of the PP/mPE blends filled with untreated glass beads and CaCO3 at a low temperature was lowered because of the weak interfacial bond. However, the values of the impact strength of the PP/mPE/filler composites at a low temperature remained at a high level compared with that of pure PP. In particular, a PP/mPE blend filled with surface‐treated kaolin had a higher low‐temperature impact toughness than the unfilled blend. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 3029–3035, 2002; DOI 10.1002/app.2333  相似文献   

20.
Bentonite (Bt) with irregular shape and surface morphology was used as a new type of filler in EPDM. EPDM/Bt composites were prepared using a laboratory size two-roll mill by adding 0 to 70 phr Bt. The effects of Bt loading on curing characteristics, morphology, tensile and thermal properties of EPDM/Bt composite were studied. Scorch and curing time were decreased with 0 to 30 phr loading and increased subsequently at 50 and 70 phr. Tensile strength and elongation at break (Eb) were increased with increasing Bt loading from 0 to 50 phr and decreased at 70 phr, whereas the tensile modulus (M100%) shows an increasing trend with increasing Bt loading. Thermogravimetric analysis shows the enhancements of thermal properties with increasing Bt loading. Morphological studies of tensile fracture surfaces of EPDM/Bt composite proves good interaction between Bt particles and EPDM at 50 phr and formation of Bt agglomerates at 70 phr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号