首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zeolite NaY at 5 g dm−3 concentration, was selected to improve the production of ethanol fermentation by Saccharomyces bayanus from high glucose concentration media. The highest ethanol productivity (3·07 g dm−3 h−1) was obtained from a 220 g dm−3 initial glucose concentration, while the highest ethanol concentration (130 g dm−3) was obtained from a 350 g dm−3 glucose medium. The zeolite is believed to have acted as a pH regulator, maintaining the pH value around 3·7–3·8. Under these conditions cellular viability was preserved and metabolic activity was maintained. Thus all the glucose was consumed, and high ethanol productivity and concentration were obtained. Therefore, the addition of zeolite improved ethanol production from high concentrations of glucose by Saccharomyces bayanus. © 1998 Society of Chemical Industry  相似文献   

2.
BACKGROUND: Bioethanol produced from renewable biomass, such as corn meal, is a biofuel that is both renewable and environmentally friendly. Significant scientific and technological investments will be needed to achieve substitution of conventional fossil fuels with alternative fuels. The ethanol fermentation of enzymatically obtained corn meal hydrolyzates by free and immobilized cells of Saccharomyces cerevisiae var. ellipsoideus yeast in a batch system was studied. The initial glucose and inoculum concentration and the time required for the efficient ethanol production were optimized taking into account parameters such as ethanol concentration, ethanol yield, percentage of the theoretical yield of ethanol and volumetric productivity in both immobilized and free cell systems. RESULTS: The yeast cells were immobilized in Ca–alginate by an electrostatic droplet generation method. An optimal initial inoculum concentration of 2% (v/v) and optimal fermentation time of 38 h for both immobilized and free yeasts were determined. An optimal initial glucose concentration of 150 g L?1 for free system was achieved. At the initial glucose concentration of 176 g L no substrate or product inhibition were achieved with immobilized yeast. CONCLUSION: By immobilization of the yeast into Ca–alginate using the method of electrostatic droplet generation a superior system was realized, which exhibited lower substrate inhibition and higher tolerance to ethanol. The cells of S. cerevisiae var. ellipsoideus yeast entrapped in Ca–alginate showed good physical and chemical stability, and no substrate and product diffusion restrictions were noticed. Copyright © 2008 Society of Chemical Industry  相似文献   

3.
The continuous production of ethanol from carob pod extract by immobilized Saccharomyces cerevisiae in a packed-bed reactor has been investigated. At a substrate concentration of 150 g dm?3, maximum ethanol productivity of 16 g dm?3 h?1 was obtained at D = 0·4 h?1 with 62·3% of theoretical yield and 83·6% sugars′ utilization. At a dilution rate of 0·1 h?1, optimal ethanol productivity was achieved in the pH range 3·5–5·5, temperature range 30–35·C and initial sugar concentration of 200 g dm?3. Maximum ethanol productivity of 24·5 g dm?3 h?1 was obtained at D = 0·5 h?1 with 58·8% of theoretical yield and 85% sugars′ utilization when non-sterilized carob pod extract containing 200 g dm?3 total sugars was used as feed material. The bioreactor system was operated at a constant dilution rate of 0·5 h?1 for 30 days without loss of the original immobilized yeast activity. In this case, the average ethanol productivity, ethanol yield (% of theoretical) and sugars′ utilization were 25 g dm?3 h?1, 58·8% and 85·5%, respectively.  相似文献   

4.
BACKGROUND: A closed‐circulating system for ethanol fermentation was constructed by coupling a cell‐immobilized bed fermentor with pervaporation using a composite PDMS membrane. A continuous fermentation experiment was carried out for about 250 h in the system at 28 °C. RESULTS: The cell density in the immobilized bed was up to 1.76 × 1010 cells g?1 gel. The ethanol concentration in the broth was maintained at about 43 g L?1. The glucose utilization and ethanol productivity were 23.26 g L?1 h?1 and 9.6 g L?1 h?1, respectively. The total flux and the ethanol flux through the membrane pervaporation unit varied in the range 300–690 g m?2 h?1 and 61–190 g m?2 h?1, respectively. The average ethanol concentration in the permeate was 23.1% (wt%). The carbon recovery efficiency was 86.8% (wt%), determined by calculating the carbon balance kinetics. The effect of ethanol concentration in the broth on the ethanol productivity was analyzed by modeling product formation kinetics of the system. CONCLUSIONS: Compared with the traditional free cell fermentation system and packed bed fermentation system, the closed‐circulating system has the promising features of higher glucose utilization and ethanol productivity, and cleaner production. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
Continuous ethanol fermentation of glucose using fluidized bed technology was studied. Saccharomyces cerevisiae were immobilized and retained on porous microcarriers. Over two-thirds of the total reactor yeast cell mass was immobilized. Ethanol productivity was examined as dilution rate was varied, keeping all other experimental parameters constant. Ethanol yield remained high at an average of 0.36 g ethanol g?1 glucose (71% of theoretical yield) as the dilution rate was increased stepwise from 0.04 h?1 to 0.14 h?1. At a dilution rate of 0.15 h?1, the ethanol yield steeply declined to 0.22 g ethanol g?1 glucose (44% of theoretical yield). The low maximum percentage of theoretical yield is primarily due to an extended mean cell residence time, and possibly due to the inhibitory effect of a high dissolved carbon dioxide concentration, enhanced by the probable intermittent levels of low pH in the reactor. Constant ethanol production was possible at a high glucose loading rate of 840 g dm?3 day?1 (attained at a dilution rate of 0.14 h?1). Although the highest average ethanol concentration (97.14 g dm?3) occurred at the initial dilution rate of 0.04 h?1, the peak average ethanol production rate (2.87 g (g yeast)?1 day?1) was reached at a greater dilution rate of 0.11 h-1. Thus, the optimal dilution rate was determined to be between 0.11 h?1 and 0.14 h?1. Ethanol inhibition on yeast cells was absent in the reactor at average bulk-liquid ethanol concentrations as high as 97.14 g dm?3. In addition, zero-order kinetics on ethanol production and glucose utilization was evident.  相似文献   

6.
BACKGROUND: Owing to the rapid depletion of petroleum fuel, the production of butanol through biological routes has attracted increasing attention. However, low butanol productivity severely impedes its potential industrial production. It is known that the immobilization of whole cells can enhance productivity in the acetone‐butanol‐ethanol (ABE) continuous fermentation process. Therefore, the objective of this study was to develop a low‐cost continuous operation for butanol production. RESULTS: Bricks were chosen as cell support because of their low cost and ease of use for immobilization. The solvent productivity for the bricks with immobilized cells was 0.7 g L?1 h?1, 1.89 times that of free cells (0.37 g L?1 h?1) at a dilution rate of 0.054 h?1. The productivity improvement can contribute to greater retention of biomass inside the reactor due to immobilization. The increase in glucose feed concentration raised total solvent production. However, it resulted in a decrease in yield (grams of solvents produced per gram of glucose introduced). Continuous operation with immobilized cells at a dilution rate of 0.107 h?1 resulted in a solvent productivity of 1.21 g L?1 h?1, 2.1 times that of the operation at 0.027 h?1. However, the yield (butanol produced per glucose consumed) was decreased to 0.19 from 0.29 under the same glucose feeding condition of 60 g L?1. CONCLUSION: The increase in dilution rate and feed glucose concentration enhanced productivity, but decreased the utilization of substrates and the final solvent concentration. Therefore, a balance between productivity and glucose utilization is required to ensure continuous process operation. Copyright © 2011 Society of Chemical Industry  相似文献   

7.
BACKGROUND: Continuous ethanol fermentation of concentrated food waste hydrolysates has been studied. The process was carried out in an immobilized cell reactor with beads of calcium‐alginate containing immobilized Saccharomyces cerevisiae H058 at temperature 30 °C and pH 5.0. RESULTS: The total residual sugar decreased with increase of hydraulic retention time (HRT) under various reducing sugar concentrations. Ethanol production by immobilized cells increased with increase in HRT, regardless of the substrate concentrations employed. The highest ethanol concentration of 89.28 g L?1 was achieved at an HRT of 5.87 h and reducing sugar concentration of 200 g L?1. At an HRT of 1.47 h, the maximum volumetric ethanol productivity of 49.88 g L?1 h?1 and the highest ethanol yield of 0.48 g g?1 were achieved at reducing sugar concentration of 160 and 200 g L?1, respectively. The difference between the fresh and the 30‐day Ca–alginate immobilized cell was also shown by scanning electronic micrographs of beads taken from their outer and inner surfaces. CONCLUSIONS: Continuous ethanol production from concentrated food waste hydrolysates using immobilized yeast cells is promising in view of the high ethanol productivity obtained at relatively high conversion and excellent reactor stability. Copyright © 2011 Society of Chemical Industry  相似文献   

8.
Chemostat and total cell retention cultures with internal filter system ofSaecharomyc.es cerevisiae H1-7 were carried out to produce ethanol from wood hydrolysate. Maximum ethanol productivity obtained in a chemostat with the aeration rate of 1 vvm was 3.79 g/(L·h). This was 20% higher than that in a chemostat without aeration. However, the substrate was not completely consumed at the dilution rate with the maximum productivity. The realistic productivity, which has higher than 99% conversion rate of substrate, was. 2.95 g/(L·h). The maximum productivity in the total cell retention culture was 6.65 g/(L·h) at the dilution rate of 0.19 h1 and the residual glucose concentration was negligible.  相似文献   

9.
Rhamnolipids are biosurfactants having several applications. A major limitation in rhamnolipid production is low productivity, which decreases significantly during stationary-phase production. In this study, fermentations were first made with nitrogen-limited stationary phase. Long-term rhamnolipid production (up to 505 h) could be maintained with low-rate N-source addition but the intermittent cell growth led to lower productivity (qp), particularly apparent at the highest addition rate. Four fermentations were next made under non-N-limited stationary phase without and with N-source supplementation; qp could be much higher at 24–26 mg g−1h−1. Three final fermentations were designed to build the maximum cell concentration to 30 g L−1 in two growth phases where the growth rate in the second phase was regulated by N-addition to control foaming. Cultures then entered non-N-limited stationary phase and were N-supplemented. At an optimal rate of 15% growth-N per 24 h to maintain cell activity, a highest rhamnolipid concentration of 120 g L−1 was obtained after 144 h with overall productivity of 839 mg L−1h−1.  相似文献   

10.
The conventional alcoholic fermentation is a typical inhibitory process, leading to low productivity and yield. The ethanol produced inhibits yeast cells, causing a reduction in the alcohol production rate and cell growth rate. In this work, modelling and simulation have shown that continuous extractive fermentation, coupling a fermenter with an extractive vacuum flash chamber, is technically possible. In this case, the ethanol is partially removed, increasing drastically the productivity. Additionally, temperature control can be performed without using heat exchangers. The optimization was carried out using the method of factorial design and response surface analysis, leading to the determination of the most relevant variables, which were: 1.2 h residence time, 0.4 flash recycle rate, 180 g dm−3 sugar concentration and 0.35 cell recycle rate. The results, using optimized variables, were 98% conversion and 23 g dm−3 h−1 productivity, which represent a three times higher productivity than in a conventional continuous process. © 1999 Society of Chemical Industry  相似文献   

11.
Saccharomyces cerevisiae ATCC 36859 preferentially consumes glucose from glucose–fructose mixtures. Synthetic media and complex media containing high fructose corn syrup supplemented with Jerusalem artichoke juice were used for the production of pure fructose syrup by the conversion of glucose to ethanol. Fructose was not converted in these processes. Increasing the concentration of Jerusalem artichoke juice increased the yields of ethanol and biomass and decreased the process time. A similar effect was obtained at a low juice concentration when a larger amount of biomass was used for the inoculum. The product from this process contained only fructose and ethanol. Use of food-grade materials results in a pure fructose syrup that is suitable for human consumption.  相似文献   

12.
The conditions for immobilizing the new L -aminoacylase-producing bacterial strain, Pseudomonas sp. BA2, by entrapment in κ-carrageenan gel, were investigated. The optimal gel concentration and cell load were determined. The addition of CoCl2 and N-acetyl-L -alanine to the immobilizing matrix enhanced L -aminoacylase activity. The enzymatic properties of immobilized Pseudomonas sp. BA2 were investigated. Enzyme activity in immobilized cells was optimal at a pH of 6·5 using 0·15 mol dm−3 Tris–maleate buffer at 45°C. The presence of 0·7 mmol dm−3 CoCl2 in the enzymatic reaction mixture improved L -aminoacylase activity. The immobilized cell preparation was used for the production of L -alanine from N-acetyl-DL -alanine in a batch reactor. Conversions of 100% were obtained using substrate concentrations ranging from 20 to 200 mmol dm−3. The reactor production was 0·74 mol h−1 g cell−1 dm−3 which is noticeably higher than that previously reported in the literature. © 1998 Society of Chemical Industry  相似文献   

13.
BACKGROUND: Microbial bioethanol production is an important option in view of the finite global oil reserves. Bioethanol fermentation was carried out using immobilized microorganisms (Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, etc.), which has many advantages compared with the use of free cells. Various support materials have been used for bioethanol fermentation, and alginate gels have been one of the most widely used matrices for cell entrapment. The aim of this study was increased bioethanol production by Saccharomyces cerevisiae immobilized on alginate gels. First, N‐vinyl‐2‐pyrrolidone was grafted onto sodium alginate. Then, the properties of ethanol production were investigated using the matrix obtained. RESULTS: The performance of ethanol fermentation was affected by calcium chloride concentration, N‐vinyl‐2‐pyrrolidone grafted onto the sodium alginate, sugar concentration and the percentage of immobilized cell beads. These effects were optimized to give maximum ethanol production. Ethanol production was accelerated when sodium alginate polymer was modified with N‐vinyl‐2‐pyrrolidone. The maximum concentration, productivity and yield of ethanol were 69.68 g L?1, 8.71 g L?1 h?1 and 0.697 g g?1, respectively. CONCLUSION: The new polymeric matrix, when compared with sodium alginate, showed better ethanol production due to the hydrophilic property of N‐vinyl‐2‐pyrrolidone. The results suggest that the proposed method for immobilization of Saccharomyces cerevisiae has potential in industrial applications of the ethanol production process. Copyright © 2011 Society of Chemical Industry  相似文献   

14.
Mercuric reductase which originated from a recombinant Escherichia coli PWS1 was purified and immobilized on a chemically modified diatomaceous earth support. The mercury reduction kinetics, pH dependence, storage stability, and reusability of the immobilized enzyme were investigated. Four dyes were examined for their electron transfer efficiency with the soluble and bound mercuric reductase. Continuous mercury detoxification by the immobilized mercuric reductase was also performed in fixed‐bed processes. The effects of bed‐length, mercury loading rate, and electron donor on the performance of the fixed beds were assessed. Immobilized mercuric reductase exhibited substrate‐inhibition‐type kinetics with a maximal activity (1.2 nmol Hg mg−1 protein s−1) occurring at an initial Hg2+ concentration of 50 µmol dm−3. The optimal pH was 7.0 for the soluble and immobilized mercuric reductase, but the immobilized enzyme maintained higher relative activity for less favorable pH values. Immobilization of the enzyme appeared to significantly enhance its storage stability and reusability. Of four artificial electron donors tested, azure A (5 mmol dm−3) demonstrated the highest relative activity (78%) for soluble mercuric reductase. For the immobilized enzyme, neutral red (5 mmol dm−3) gave a relative activity of nearly 82%. With a fixed‐bed, the mercury‐reducing efficiency of using neutral red was only 30–40% of that obtained using NADPH. Fixed‐bed operations also showed that increased bed length facilitated mercury reduction rate, and the optimal performance of the beds was achieved at a flow rate of approximately 100–200 cm3 h−1. © 1999 Society of Chemical Industry  相似文献   

15.
The production of enriched fructose syrups and ethanol from a synthetic medium with high sucrose concentrations was studied in a batch process using Saccharomyces cerevisiae ATCC 36858. The results showed that the fructose yield was above 92% of theoretical values in synthetic media with sucrose concentrations between 180 g dm?3 and 726 g dm?3. Ethanol yield was about 82% in media with sucrose concentrations up to 451 g dm?3. A product containing 178 g dm?3 fructose, which represents 97% of the total sugar content, and 79 g dm?3 ethanol was obtained using a medium with 360 g dm?3 sucrose. The fructose fraction in the carbohydrates content in the produced syrups decreased with increases in the initial sucrose concentration. In a medium with initial sucrose concentration of 574 g dm?3, the fructose content in the produced broth was 59% of the total carbohydrates. Glycerol and fructo‐oligosaccharides were also produced in this process. The produced fructo‐oligosaccharides started to be consumed when the concentration of sucrose in the media was less than 30% of its initial value. Complete hydrolysis of these sugars was noticed in media with sucrose concentrations below 451 g dm?3. These findings will be useful in the production of ethanol and high fructose syrups using sucrose‐based raw materials with high concentrations of this carbohydrate. © 2001 Society of Chemical Industry  相似文献   

16.
The mutant Saccharomyces cerevisiae ATCC 36858 was used in the production of ethanol and/or fructose from synthetic media in batch processes with raffinose, melibiose or sucrose. The mutant was able to hydrolyze all the sugars used and to selectively ferment glucose and galactose to ethanol while fructose accumulated in the fermentation medium. The fructose yield was above 89% of the theoretical value in the media with either raffinose or sucrose, when initial concentrations were between 131.5 g dm?3 and 242.0 g dm?3. The ethanol yields were 82% and 77% of the theoretical values in the media with melibiose and sucrose, respectively, and about 72% of the theoretical value when raffinose was used. The fructose fraction in the carbohydrate content of the produced syrups was more than 96% when raffinose concentration was below 189.1 g dm?3. However, even at a sucrose concentration of 187.9 g dm?3, the produced syrup contained 100% fructose. Some oligosaccharides were also produced in all tested media. The produced oligosaccharides were consumed by the end of the fermentation process. These findings can be useful in the production of ethanol and high fructose syrups using raw materials based on sucrose and raffinose such as molasses. Copyright © 2003 Society of Chemical Industry  相似文献   

17.
The influence of ethylenediaminetetra acetic acid (EDTA), potassium ferrocyanide and zeolite X on ethanol production from sugar beet molasses by Saccharomyces cerevisiae was studied. For all of the three substances used, the effect was more pronounced when added to the fermentation medium rather than to the growth medium; 1·9 mmol dm−3 potassium ferrocyanide caused an increase in the final ethanol concentration of about 16·4% and 47·5% with respect to control culture on addition to growth and fermentation media respectively. The greatest stimulation in product yield was obtained with zeolite X introduced during the fermentation stage; 8·0 g dm−3 zeolite X increased ethanol concentration by 53·3%. © 1997 SCI.  相似文献   

18.
Linoleate 9R-lipoxygenase (9R-LOX) from Nostoc sp. SAG 25.82 was identified as arachidonate (ARA) 11R-LOX by the determination of the product obtained from the conversion of ARA. The specific activity and catalytic efficiency (kcat/Km) of the enzyme for C20 and C22 polyunsaturated fatty acids followed the order ARA > eicosapentaenoic acid > docosahexaenoic acid. The production of the lipid mediator 11R-hydroxyeicosatetraenoic acid (11R-HETE) was performed using Escherichia coli cells expressing ARA 11R-LOX from Nostoc sp. The reaction conditions, such as pH, temperature, solvent and its concentration, and substrate and cell concentrations, were optimized using the recombinant cells, and the optimal conditions for the production of 11R-HETE from ARA were pH 7.0, 25°C, 10 g L−1 cells, 5.0 mM ARA, 4% (v/v) ethanol, and 10 mM cysteine as a reducing agent. Under these optimized conditions, E. coli cells expressing 11R-LOX converted 5.0 mM ARA into 4.74 mM 11R-HETE in 60 min, with a molar conversion yield of 95% a volumetric productivity of 79 μM min−1 and a specific productivity of 7.9 μM min−1 g−1. To the best of our knowledge, this is the first report on the quantitative biotechnological production of 11R-HETE.  相似文献   

19.
A new immobilized biocatalyst based on Rhizopus oryzae fungal cells entrapped in poly(vinyl alcohol)‐cryogel was evaluated in both the batch and semi‐batch processes of L (+)‐lactic acid (LA) production, when glucose, acid hydrolysates of starch or gelatinized potato starch were used as the main substrates. Under the batch conditions, the immobilized biocatalyst developed produced LA with yields of 94% and 78% from glucose and acid starch hydrolysates, respectively. Semi‐batch conditions enabled product yields of 52% and 45% to be obtained with the corresponding substrates. The highest process productivity (up to 173 g L?1) was reached under semi‐batch conditions. Potato starch (5–70 g L?1) was also transformed into lactic acid by immobilized R. oryzae. It was shown that long‐term operation of the immobilized biocatalyst (for at least 480 h) produced a low decrease in metabolic activity. Copyright © 2006 Society of Chemical Industry  相似文献   

20.
A novel repeated batch operation mode was proposed for ethanol fermentation, where the fermenter beer was periodically exchanged between the fermenter with biomass recycle and the distillation unit, to promote the selective removal of ethanol. Using the mathematical model developed, as based on the experimental results, the optimal operation of the proposed method was shown to attain high performance, with a productivity of about 12 g dm−3 h−1 and a product concentration of 400 g dm−3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号