首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrodynamics of a turbulent fluidized bed is studied by means of the concurrent application of fiber optic sensors and a helium tracer. It is observed that in the vicinity of the column wall there is a high bubble activity region. Low bubble activity and negative bubble velocities are reported for the dense phase near the column centre-line region. A temperature increase from 22 to 145°C results in a more homogeneous turbulent fluidized bed with smaller bubbles and more gas flowing through an expanded dense bed emulsion phase. Mass transfer coefficients between bubble-emulsion (kbe) and bubble-annulus (kba) are evaluated. The dominant mass transfer path was the one from the bubbles to the annular region with kba being several times greater than kbe.  相似文献   

2.
Although extensive studies have been conducted on convective heat transfer from a heat exchanger surface to a gas fluidized bed, the contribution through particle convection has not been adequately described, especially in turbulent fluidized beds. In this study, the role that dense bed hydrodynamics play on particle convection has been outlined. The existing models in the literature suggest a constant decrease of particle-wall contact time with an increase in the gas velocity. It has been experimentally demonstrated, however, that the contact time increases, both in bubbling and turbulent regimes, upon increasing the gas velocity. A comprehensive model has been developed to represent such a trend and improve agreement with experimental data presented in literature. The proposed model includes two constants for taking into account the wall effect on bubbles and clusters. The constants of the model have been evaluated based on the radial profiles of the distribution of bubbles and clusters using a radioactive particle tracking technique. A comparison of the predicted results with the experimental data from the literature confirms the validity of the present model for the dense bed region of a fluidized bed of sand particles.  相似文献   

3.
An experimental check was made upon the theory given in Part I. Cracking catalyst was used as a solid and differently adsorbed tracer gases were used. In a two-dimensional fluidized bed bubbles were formed underneath a gauze cap, while solid flowed along the bubble at the corresponding bubble velocity. Tracer injections provided the value for the transfer coefficient. In three-dimensional beds of 18 and 90 cm dia. large traced gas bubbles were injected. Tracer concentration was detected at certain heights. From the decrease the transfer coefficient was calculated. In the 90 cm bed the transfer coefficient was also calculated from residence time distribution measurements when the dense phase was perfectly mixed.It shows, that the two-dimensional bubble confirms the theory. For three-dimensional bubbles the transfer is higher than theoretically predicted, especially when the dense phase is expanded.  相似文献   

4.
Axial and radial concentration profiles of two tracer gases, methane and naphthalene, have been measured above orifices feeding gas into the base of fluidized beds of diameter 152 mm. The experiments were carried out under hydrodynamic conditions that led to short spouts connecting a central orifice to forming bubbles. Under these conditions mass transfer is shown to be primarily due to convective outflow from the spouts into the dense phase. The mass transfer is predicted with reasonable success by a convective model which uses pressure profiles to help fix hydrodynamic variables and assumes a series of well mixed annular cells in the dense phase.  相似文献   

5.
对Shedid等搭建的圆柱体流化床采用欧拉?欧拉法进行三维数值模拟,考察了颗粒球形度、表观进气速度和床料初始堆积高度对流化床内垂直加热壁面与流动床料之间对流传热特性的影响,采用有效导热系数分别计算气相和固相的对流传热系数。结果表明,随表观进气速度增大,流化床内颗粒物料湍流运动加剧,加热壁面平均温度和流体平均温度下降,壁面流体间传热平均温度差减小,壁面流体间对流传热系数增大;随初始床料高度增加,流化床内颗粒与加热壁面的接触面积增大,导致固相平均对流传热系数增大。  相似文献   

6.
An experimental and computational study is presented on the hydrodynamic characteristics of FCC particles in a turbulent fluidized bed. Based on the Eulerian/Eulerian model, a computational fluid dynamics (CFD) model incorporating a modified gas‐solid drag model has been presented, and the model parameters are examined by using a commercial CFD software package (FLUENT 6.2.16). Relative to other drag models, the modified one gives a reasonable hydrodynamic prediction in comparison with experimental data. The hydrodynamics show more sensitive to the coefficient of restitution than to the flow models and kinetics theories. Experimental and numerical results indicate that there exist two different coexisting regions in the turbulent fluidized bed: a bottom dense, bubbling region and a dilute, dispersed flow region. At low‐gas velocity, solid‐volume fractions show high near the wall region, and low in the center of the bed. Increasing gas velocity aggravates the turbulent disorder in the turbulent fluidized bed, resulting in an irregularity of the radial particle concentration profile. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

7.
Existence of clusters in dense fluidized beds was investigated by analyzing the time-position data of a tracer obtained in several radioactive particle tracking experiments. It was found that in the case of sand particles, more gas passes through the bed as bubbles with increasing the superficial gas velocity and in the case of FCC powder, flow of the gas through the bed as bubbles does not increase in the turbulent fluidization regime. Cluster diameters were estimated from their velocities and found that descending clusters are generally larger than ascending ones and the size of both increases with increasing the superficial gas velocity. Bubble velocities evaluated in this work are in good agreement with the correlations in the bubbling regime of the fluidization available in the literature.  相似文献   

8.
9.
The axial mixing of ion exchange resin and liquid in fluidized beds is modelled by a series of well-mixed cells for the resin and an equal or larger number of mixed cells for the liquid. Concentration breakthrough curves are calculated using this mixing model, assuming finite mass transfer kinetics and irreversible equilibrium. The model is used to describe mixing patterns and kinetics in static fluidized beds (no resin flow); the information so obtained can be used to design continuous and periodic flow counter-current fluidized bed ion exchange systems.  相似文献   

10.
A heterogeneous model for the fast fluidized bed reactor which carries out a gas-solid non catalytic reaction is presented. The hydrodynamics of the fast fluidized bed is characterized by the model of Kwauk et al. (1985) which assumes the existence of two phases; a dense phase and a dilute pneumatic transport phase. For a given solid flowrate, the length of the reactor occupied by each phase depends on gas velocity, particle diameter and density and average voidage within the reactor. The gas-solid reaction is assumed to follow the shrinking core model. The solids are assumed to be completely backmixed in the dense phase and move in plug How in the dilute pneumatic transport phase. The gas phase is assumed to be in plug flow in both phases

For given gas and solid flowrates, the transition from the dense phase flow to the fast fluidized bed (containing two regions) as functions of particle size and density is determined using the model of Kwauk et al. (1985). The numerical solution of the governing mass balance equations show that for given solid and gas flowrates, (and average voidage) the gas phase conversion shows an unusual behavior with respect to particle diameter and density. Such behavior is resulted from the effects of particle diameter and density on the reactor volume occupied by each phase and the effect of particle diameter on the apparent reaction rate. The numerical results show that a fast fluidized bed gives the best conversion at large particle density and for the particle diameter which results the fast fluidized bed to be operated near the pure dense phase flow.  相似文献   

11.
Mathematical modelling of fluidized bed reactors . Among the many fluidized bed models to be found in the literature, the two-phase model originally proposed by May has proved most suitable for accommodation of recent advances in flow mechanics: this model resolves the gas/solids fluidized bed into a bubble phase and a suspension phase surrounding the bubbles. Its limitation to slow reactions is a disadvantage. On the basis of the analogy between fluidized beds and gas/liquid systems, a general two-phase model that is valid for fast reactions has therefore been developed and its validity is confirmed by comparison with the experimental results obtained by other authors. The model describes mass transfer across the phase interface with the aid of the film theory known from gas/liquid reactor technology, and the reaction occurring in the suspension phase as a pseudo-homogeneous reaction. Since the dependence of the performance of fluidized bed reactors upon geometry is accounted for, the model can also be used for scale-up calculations. Its use is illustrated with the aid of design diagrams.  相似文献   

12.
The gas phase mixing in a fluidized bed of glass beads (dp = 0.362 mm) in the slugging and turbulent flow regimes has been studied in a 0.1 m-ID × 3.0 m high Plexiglas column.

The gas dispersion in the downstream of the bed has been described by a diffusion process with the axial and radial dispersion coefficients. The radial dispersion coefficient of the gas phase is nearly constant with the variation of gas velocity in the slugging flow regime, but it increases with an increase in gas velocity in the turbulent flow regime.

Appreciable backmixing of the gas phase is pronounced in the slugging flow regime whereas the lower gas backmixing is produced in the turbulent flow regime. The gas backmixing coefficient increases with an increase in gas velocity in the slugging flow regime, but it decreases slightly with an increase in gas velocity in the turbulent flow regime.

The radial mixing and backmixing coefficients of the gas in terms of Peclet numbers have been correlated with the relevant dimensionless parameters (Ug/Umf, ps/pg, dp/Dt).

The gas flow pattern in the bed has been well represented by a simplified model based on the two gas phases in the dilute and dense phases which are percolating through the bed in plug flow. The present model can predict the gas exchange coefficient between the phases, the fractions of the dilute phase, the interstitial gas in the dense phase, and the interstitial gas velocity in the bed.  相似文献   

13.
采用直接模拟Monte Carlo方法法DSMC)模拟颗粒间的碰撞,采用考虑颗粒脉动流动对气相湍流流动影响的大涡模拟(LES)研究气相湍流.单颗粒运动满足牛顿第二定律,颗粒相和气相相间作用的双向耦合由牛顿第三定律确定.数值模拟垂直管内气固两相上升流动,对管内气相速度和颗粒相速度、浓度以及聚团流动进行分析.研究平均单个颗粒团聚物的存在时间、颗粒团聚物的时间份额和颗粒团聚物的生成频率分布特性,模拟结果与文献的实验结果基本吻合.  相似文献   

14.
采用气-固环流反应器与输送床烧焦管相结合的结构形式,建立了一套适应石油焦或气化余焦燃烧要求的大型冷态实验装置. 在不同操作条件下,采用差压变送器测定了环流混合段内环区及外环区内床层轴向压力梯度及密度的分布规律. 结果表明,内环床层密度分布可分为底部密相区和上部湍流扩散区;内环颗粒循环强度对底部密相区的密度分布影响较小,只对导流筒上部湍流扩散区有影响;随着内环表观气速的增大,整个内环床层密度均降低. 外环床层密度分布与内环的表观气速、颗粒循环强度和外环床层密相料位高度有关. 利用实验数据回归出了内环和外环轴向颗粒密度分布的经验模型,其计算值与实验值吻合较好.  相似文献   

15.
The performance of batch and continuous fluidized solids dryers has been modeled, with allowance for diffusional moisture transport in the dense phase particles and for interstitial gas-to-particle mass transfer within the dense phase, as well as for interphase exchange resistance between gas bubbles and the dense phase. Two types of boundary conditions are employed. Variations of the bed temperature and product moisture content in the bed with time are predicted numerically under various batch drying conditions. Exit product moisture contents, bed temperatures and outlet air humidities are also predicted for continuous drying at various mean residence times. The model can be used for homogeneous as well as bubbling fluidized bed drying. It can be used for a wide range of materials, including cereal grains and granular synthetic polymeric materials.  相似文献   

16.
吴诚  高希  成有为  王丽军  李希 《化工学报》2013,64(3):858-866
在湍动流化床中,过渡段对于包括甲醇制烯烃在内的气固催化快反应有着重要的作用。采用PV6D反射型光纤探针对内径95 mm的湍动流化床内过渡段的固含率分布和脉动参数进行了测量,分别考察了表观气速和静床高的影响,并采用修正的基于颗粒动力学的三段曳力双流体模型进行模拟。实验表明,湍动流化床过渡段中固含率的轴向分布呈现S型和指数型两种类型,固含率轴向与径向分布都在过渡段内出现最大梯度,表明过渡段中固体浓度分布比稀相段和密相段更不均匀。表观气速和静床高的变化将导致S型和指数型分布的相互转变,并且对过渡段底部与壁面附近的固体高浓度区影响最为显著。局部固含率脉动概率密度分布表明,在静床高较小时,随着气速的增大,床层下部气含率最大值位置将从中心区移动至环隙区,呈现气含率的双峰型分布。本文提出的修正三段曳力模型考虑了颗粒团聚的影响,对过渡段中分布板影响区之外的固含率分布均能较好地模拟。  相似文献   

17.
Simulation of chemical processes involving nonideal reactors is essential for process design, optimization, control and scale‐up. Various industrial process simulation programs are available for chemical process simulation. Most of these programs are being developed based on the sequential modular approach. They contain only standard ideal reactors but provide no module for nonideal reactors, e.g., fluidized bed reactors. In this study, a new model is developed for the simulation of fluidized bed reactors by sequential modular approach. In the proposed model the bed is divided into several serial sections and the flow of the gas is considered as plug flow through the bubbles and perfectly mixed through the emulsion phase. In order to simulate the performance of these reactors, the hydrodynamic and reaction submodels should be integrated together in the medium and facilities provided by industrial simulators to obtain a simulation model. The performance of the proposed simulation model is tested against the experimental data reported in the literature for various gas‐solid systems and a wide range of superficial gas velocities. It is shown that this model provides acceptable results in predicting the performance of the fluidized bed reactors. The results of this study can easily be used by industrial simulators to enhance their abilities to simulate the fluidized bed reactor properly.  相似文献   

18.
19.
在表观气速Ug=0.04~1.14 m/s时,采用旋流筛板构型的挡板式内构件,通过对比分析旋流筛板式气固挡板流化床与自由床内流动现象、压差脉动标准偏差和压力脉动标准偏差等参数,确定了旋流筛板式气固挡板流化床能有效破碎气泡的流动与操作条件。结果表明,构件下方区域颗粒随表观气速增加而不断转移至构件上方床层,造成构件下方区域密相床层高度持续降低,该区域出现3种流动状态并直接决定构件是否能破碎气泡。当Ug<0.44 m/s时,构件下方区域密相床层料位较高,形成下部为密相床层、上部为密相与大气泡交替通过构件的鼓泡床,此时构件具有抑制气泡生长并破碎气泡的作用,全床压差脉动及压力脉动标准偏差低于相同条件下的自由床;当0.44≤Ug<0.66 m/s时,密相床层料位较低,形成下部为密相床层、上部为单一稀相的湍动床,此时构件不再直接抑制气泡生长或破碎气泡,但构件下方密相床层的存在能降低构件下方及构件上方一定高度内床层的压力脉动强度;当Ug≥0.66 m/s后,密相床层完全消失,形成气体为连续相的稀相流化状态,构件不能破碎气泡、降低床层压力和压差脉动强度。  相似文献   

20.
Hydrodynamics in a conical fluidized bed were studied using electrical capacitance tomography (ECT) for a bimodal and mono-disperse particle size distribution (PSD) of dry pharmaceutical granule. The bimodal PSD exhibited a continuous distribution with modes at 168 and 1288 μm and contained approximately 46% Geldart A, 32% Geldart B and 22% Geldart D particles by mass. The mono-disperse PSD had a mean particle size of 237 μm and contained approximately 71% Geldart A, 27% Geldart B, and 2% Geldart C particles by mass. The granule particle density was 830 kg/m3. Experiments were conducted at a static bed height of 0.16 m for gas superficial velocities ranging from 0.25 to 2.50 m/s for the mono-disperse PSD, and from 0.50 to 3.00 m/s for the bimodal PSD. These gas velocities covered both the bubbling and turbulent fluidization regimes. An ‘M’-shaped time-averaged radial voidage profile appeared upon transition from bubbling to turbulent fluidization. The ‘M’-shaped voidage profile was characterized by a dense region near the wall of the fluidized bed with decreasing solids concentration towards the centre. An increased solids concentration was observed in the middle of the bed. Frame-by-frame analysis of the images showed two predominant bubble types: spherical bubbles with particle penetration in the nose which created a core of particles that extended into, but not through, the bubble; and spherical bubbles. Penetrated bubbles, responsible for the ‘M’ profile, were a precursor to bubble splitting; which became increasingly prevalent in the turbulent regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号