首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
简要介绍宽禁带半导体氮化镓材料的生长、微波电子器件的物理特性、制造工艺和微波性能。  相似文献   

2.
氮化镓微波电子学的进展   总被引:8,自引:0,他引:8  
简要介绍宽禁带半导体氮化镓材料的生长,微波电子器件的物理特性、制造工艺和微波性能。  相似文献   

3.
作为第三代半导体材料的典型代表,宽禁带半导体氮化镓(GaN)具有许多硅材料所不具备的优异性能,是高频、高压、高温和大功率应用的优良半导体材料,在民用和军事领域具有广阔的应用前景。随着GaN技术的进步,特别是大直径硅(Si)基GaN外延技术的逐步成熟并商用化,GaN功率半导体技术有望成为高性能低成本功率技术解决方案,从而受到国际著名半导体厂商和研究单位的关注。总结了GaN功率半导体器件的最新研究,并对GaN功率器件发展所涉及的器件击穿机理与耐压优化、器件物理与模型、电流崩塌效应、工艺技术以及材料发展等问题进行了分析与概述。  相似文献   

4.
三代半导体功率器件的特点与应用分析   总被引:2,自引:1,他引:1  
以S i双极型功率晶体管为代表的第一代半导体功率器件和以GaAs场效应晶体管为代表的第二代半导体功率器件为雷达发射机的大规模固态化和可靠性提高做出了贡献。近年来以S iC场效应功率晶体管和GaN高电子迁移率功率晶体管为代表的第三代半导体--宽禁带半导体功率器件具有击穿电压高、功率密度高、输出功率高、工作效率高、工作频率高、瞬时带宽宽、适合在高温环境下工作和抗辐射能力强等优点。人们寄希望于宽禁带半导体功率器件来解决第一代、第二代功率器件的输出功率低、效率低和工作频率有局限性以至于无法满足现代雷达、电子对抗和通信等电子装备需求等方面的问题。文中简要介绍了半导体功率器件的发展背景、发展过程、分类、特点、应用、主要性能参数和几种常用的半导体功率器件;重点叙述了宽禁带半导体功率器件的特点、优势、研究进展和工程应用;对宽禁带半导体功率器件在新一代雷达中的应用前景和要求进行了探讨。  相似文献   

5.
宽禁带半导体是指禁带宽度Eg〉2.0—6.0电子伏特eV的半导体材料,具体包括碳化硅SiC、氮化镓GaN、氮化镓铝AIGaN等。这类材料的禁带宽度大、击穿电场强度高、饱和电子漂移速度快、热导率大、介电常数小、抗辐射能力强、具有良好的化学稳定性,非常适合用来研制抗辐射、高频、大功率与高密度集成的半导体器件。利用其特有的禁带宽度,研制出蓝、绿光和紫外光发光器件及光探测器。  相似文献   

6.
宽禁带半导体材料技术   总被引:1,自引:0,他引:1  
宽禁带半导体材料是一种新型材料,具有禁带宽度大、击穿电场高、热导率高等特点,非常适合于制作抗辐射、高频、大功率和高密度集成电子器件;利用其特有的禁带宽度,还可以制作蓝光、绿光、紫外光器件和光探测器件,能够适应更为苛刻的生存和工作环境。在宽禁带半导体材料中,具有代表性的是碳化硅(SiC)、氮化镓(GaN)、氮化铝(AlN)、金刚石以及氧化锌(ZnO),综合叙述了这些材料的特性、发展现状和趋势;并介绍了SiC、GaN、ZnO材料的应用情况和代表性器件的研究进展。  相似文献   

7.
1kW宽带线性SiC功率放大器设计   总被引:1,自引:0,他引:1  
余振坤  张毅  刘晗 《现代雷达》2011,33(7):68-71
简述了SiC宽禁带半导体材料的特性,通过与传统Si半导体材料相比较,该材料在击穿电场强度、截止频率、热传导率、抗辐射能力、结温和热稳定性等方面具有明显优势。SiC宽禁带功率器件在输出功率、功率密度、工作频率、环境适应性等方面具有卓越的性能,在雷达发射机中有良好的应用前景。文中利用SiC宽禁带功率器件设计制作了L波段1 kW功率放大器,对SiC宽禁带功率放大器进行了性能测试,根据实验数据分析了SiC宽禁带功率器件对固态雷达发射机性能的改善。  相似文献   

8.
概述根据半导体材料禁带宽度的不同,可分为宽禁带半导体材料与窄禁带半导体材料。若禁带宽度Eg<2ev(电子伏特),则称为窄禁带半导体,如锗(Ge)、硅(Si)、砷化镓(G a A s)以及磷化铟(I n P);若禁带宽度E g>2.0 ̄6.0ev,则称为宽禁带半导体,如碳化硅(SiC)、氮化镓(GaN)、4H碳化硅(4H-SiC)、6H碳化硅(6H-SiC)、氮化铝(AlN)以及氮化镓铝(ALGaN)等。宽禁带半导体材料具有禁带宽度大、击穿电场强度高、饱和电子漂移速度高、热导率大、介电常数小、抗辐射能力强以及良好的化学稳定性等特点,非常适合于制作抗辐射、高频、大功率和高密度集成…  相似文献   

9.
宽禁带半导体设备技术是宽禁带半导体器件的支撑和重要基础。简要介绍了宽禁带半导体器件发展面临的设备问题,重点介绍了碳化硅晶体生长炉、碳化硅外延生长炉、碳化硅离子注入机和氮化镓MOCVD四种制约我国宽禁带半导体器件技术发展的关键设备,指出了宽禁带半导体设备技术的未来发展趋势。  相似文献   

10.
4 宽禁带半导体功率器件的发展背景 宽禁带半导体功率器件的发展是在宽禁带半导体材料发展的基础上发展起来的,其迅速发展的主要原因之一是源于美国军方的兴趣,尤其是2002年美国国防先进研究计划局(DARPA)通过并实施了宽禁带半导体技术计划(WBGSTI),该计划极大地推动了宽禁带半导体技术的发展.  相似文献   

11.
<正>以碳化硅(SiC)和氮化镓(GaN)为代表的第三代半导体(亦称宽禁带半导体)材料具有禁带宽度大、击穿电场高、热导率高、电子饱和速率高以及抗辐射能力强等优点。其中SiC功率器件及模块已经逐渐成为特高压柔性电网、5G移动通信基础设施、高速轨道交通、新能源汽车、航空航天装备、数据中心等“新基建”核心领域的“关键核芯”。我国“十四五”规划和2035年远景目标纲要明确指出:以SiC为代表的宽禁带半导体是事关国家安全和发展全局的基础核心领域,是需要集中优势资源攻关的领域关键核心技术。  相似文献   

12.
<正>近日,中国科学院微电子研究所氮化镓(Ga N)功率电子器件研究团队与香港科技大学教授陈敬团队、西安电子科技大学教授、中科院院士郝跃团队合作,在GaN增强型MIS-HEMT器件研制方面取得新进展,成功研制出具有国际先进水平的高频增强型Ga N MIS-HEMT器件。第三代半导体材料氮化镓具有高禁带宽度、高击穿电场、高饱和电子漂移速度等优异的物理性质,尤其  相似文献   

13.
半导体材料Ga2O3是继宽禁带半导体材料SiC/GaN之后新兴的直接带隙超宽禁带氧化物半导体,其禁带宽度为4.5~4.9eV,击穿电场强度高达8MV/cm(是SiC及GaN的2倍以上),物理化学稳定性高,在发展下一代电力电子学和固态微波功率电子学领域具有较大的潜力。自2012年第一只Ga2O3场效应晶体管诞生以来,Ga2O3微电子学的研究呈现快速发展态势。本文综述了β-Ga2O3单晶材料和外延生长技术以及β-Ga2O3二极管和β-Ga2O3场效应管等方面的研究进展,介绍了β-Ga2O3材料和器件的新工艺、新器件结构以及性能测试结果,分析了相关技术难点和创新思路,展望了Ga2O3微电子学未来的发展趋势。  相似文献   

14.
氮化镓(GaN)作为新一代半导体材料,具有高功率容量和高热容性等特点,所以GaN微波功率器件成为近几年研究的热点。随着GaN功放管的功率不断提高,以氮化镓(GaN)为基础的微波功率器件的应用取得了很大的进步。本文对氮化镓(GaN)功率器件的特点和现状进行了介绍,并对X波段50W GaN功放管的电路设计、影响电路的因素进行了分析和研究。最后完成了一个X波段50W固态功放的设计,并给出了测试结果。  相似文献   

15.
宽禁带半导体SiC功率器件发展现状及展望   总被引:7,自引:0,他引:7  
碳化硅(SiC)是第三代半导体材料的典型代表,也是目前晶体生长技术和器件制造水平最成熟、应用最广泛的宽禁带半导体材料之一,是高温、高频、抗辐照、大功率应用场合下极为理想的半导体材料.文章结合美国国防先进研究计划局DARPA的高功率电子器件应用宽禁带技术HPE项目的发展,介绍了SiC功率器件的最新进展及其面临的挑战和发展前景.同时对我国宽禁带半导体SiC器件的研究现状及未来的发展方向做了概述与展望.  相似文献   

16.
概述 根据半导体材料禁带宽度的不同,可分为宽禁带半导体材料与窄禁带半导体材料.若禁带宽度Eg<2ev(电子伏特),则称为窄禁带半导体,如锗(Ge)、硅(Si)、砷化镓(GaA s)以及磷化铟(InP);若禁带宽度Eg>2.0~6.0ev,则称为宽禁带半导体,如碳化硅(SiC)、氮化镓(GaN)、4H碳化硅(4H-SiC)、6H碳化硅(6H-SiC)、氮化铝(AIN)以及氮化镓铝(ALGaN)等.  相似文献   

17.
宽禁带半导体紫外光电器件和功率半导体器件的发展对AlN材料和高Al组分AlGaN材料有着迫切的需求.由于缺乏大尺寸AlN同质衬底,基于异质外延生长的AlN模板材料成为了宽禁带半导体器件制造的最佳选择.但是,由于Al原子表面迁移能力较差,AlN外延材料表面易呈现岛状生长模式,导致AlN模板材料的晶体质量和表面质量较差,严...  相似文献   

18.
本文介绍了基于新型GaN宽禁带半导体材料的大功率器件的特点和优势,采用微波仿真软件ADS对一款S波段的GaNMOSFET进行优化仿真设计,得到了良好的仿真结果,并给出了该功放的实物和测试数据。测试结果表明,该功放适用于2.1~2.7GHz,功率量级为IOOW,连续波和脉冲制式均可工作,对GaNMOSFET功率器件高增益...  相似文献   

19.
《微纳电子技术》2018,(12):936-936
一、征文范围1.宽禁带(GaN和SiC等)外延材料的结构设计、制备与检测技术;2.功率器件用GaAs和InP外延材料的结构设计、制备与检测技术;3.基于金刚石、石墨烯的功率器件的结构设计、加工与测试技术;4.微波功率器件的结构设计、加工与测试技术;5.电力电子器件的结构设计、加工与测试技术;6.特种高功率半导体器件的结构设计、加工与测试技术;7.功率器件的封装和可靠性技术;8.功率器件的系统集成技术;  相似文献   

20.
郝跃  张金风  沈波  刘新宇 《半导体学报》2012,33(8):081001-8
近年来,氮化物半导体电子器件和材料研究有了重大的进展。在国家自然科学基金资助下,西安电子科技大学、北京大学和中科院微电子所完成了国家自然科学基金重点项目《GaN宽禁带微电子材料和器件重大基础问题研究》。致力于通过氮化物电子材料和器件的基础物理机理研究提高GaN电子材料的结晶质量和电学性能、发展新结构GaN异质结材料研究,获得高性能的GaN HEMT微波功率器件。本文主要介绍该项目在GaN微波功率HEMT和新型高k栅介质MOS-HEMT、InAlN/GaN材料的生长和物性缺陷分析以及HEMT器件研制、GaN异质结的量子输运和自旋性质研究以及GaN材料高场输运性质和耿氏器件等几个方面取得的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号