首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
This paper deals with the study of interaction of manufacturing thermal residual stresses and mechanical loading in penny-shaped delaminations embedded between dissimilar, anisotropic fiber composite layers by conducting two sets of three-dimensional thermoelastic finite element analyses with and without residual stress effects. Modified crack closure integral (MCCI) techniques based on the concepts of linear elastic fracture mechanics (LEFM) have been used to calculate the distribution of individual modes of strain energy release rates (SERR) to investigate the interlaminar delamination initiation and propagation characteristics. Asymmetric variations of strain energy release rates obtained along the delamination front are caused by the overlapping stress fields due to the coupling effect of thermal and mechanical loadings. It is found that parameters such as ply sequence and orientation, thermoelastic anisotropy and material heterogeneity, and ply properties of the delaminated interface dictate the interlaminar fracture behavior of multi-ply laminated FRP composites.  相似文献   

2.
含分层损伤复合材料层合板的屈曲特性研究   总被引:2,自引:0,他引:2  
本文利用有限元方法,对压缩载荷作用下含各种形状脱层损伤的复合层合板的屈曲模态和载荷进行了研究。对不同的脱层损伤尺寸,层合板分别有整体,混合和局部三种屈曲模态,穿透脱层和埋藏脱层的层合板其临界载荷的变化规律是相同的。  相似文献   

3.
Results are reported on the fatigue growth of internal delaminations in glass/epoxy composite beam/plates subjected to constant amplitude cyclic compression. Because of compressive loading, these structures undergo repeated buckling/unloading of the delaminated layer with a resulting reduction of the interlayer resistance. A noteworthy feature of the problem is that the state of stress near the delamination tip is of mixed mode (I and II). The present combined experimental/analytical investigation for the glass/epoxy composites complements our earlier studies on delamination growth under cyclic compression in unidirectional graphite/epoxy specimens. Several configurations are studied with the delamination located at different depths (through the thickness) and with different applied maximum compressive displacements. The experimental data are correlated with the predictions from a combined delamination buckling/postbuckling and fracture mechanics model. A mode-dependent fatigue delamination growth law is used together with an initial postbuckling solution for the deformation pattern of the delaminated layer and the substrate, which does not impose any restrictive assumptions on the delamination thickness and plate length. The experimental data seem to be adequately correlated with the theory and the fatigue delamination growth is found again to be strongly affected by the relative location of the delamination through the plate thickness. Finally, a comparison of the cyclic growth rate in glass/epoxy specimens with the corresponding one in graphite/epoxy specimens of the same geometry and applied loading shows that the delamination would grow much faster in the graphite/epoxy specimens.  相似文献   

4.
The effect of delamination on the transverse thermal conductivity of a biaxial multiweave SiC-fiber-reinforced chemical-vapor-infiltrated-matrix composite was studied. The delamination process, induced by compressive loading, consisted of enlarging and widening pre-existing interply cavities in the as-received composite. Ultrasonic scanning suggested that the delamination process resulted in mechanical debonding between the plies. At room temperature, the delamination reduced the transverse thermal conductivity by a factor of ∼5. As a result of gaseous conduction in the interply cavities and/or delamination, the thermal conductivity was higher in air/nitrogen at atmospheric pressure than under vacuum, a difference that was especially pronounced in the delaminated sample. The thermal conductivity of the as-received and delaminated samples exhibited a negative and positive temperature dependence, respectively, which resulted in almost-equal values at temperatures >1000°C. Data analysis showed that the thermal conductivity of the delaminated composite was almost independent of the thermal conductivity of the plies themselves; instead, the thermal conductivity of the composite was controlled primarily by conduction across the delaminations at areas of direct contact, conduction through the gaseous phase within the delaminations, and radiation across the delaminations.  相似文献   

5.
含分层损伤复合材料组合层合梁的屈曲性态   总被引:2,自引:0,他引:2  
本文基于Mindlin假定推导了考虑剪切的组合层合梁的有限元列式,并在此基础上计算出含分层损伤的各种层合梁在受轴向压力情况下的屈曲模式。从中得出梁的屈曲性态与铺设角,梁的几何形状,分层位置及分层大小等因素的关系,所得结论具有普遍意义。  相似文献   

6.
The use of composite materials has been extensively increasing in the recent decades, mainly due to their high strength and stiffness to weight ratios, as well as their non-corrosive attribute. Adhesive joints are used effectively to join composites to composites or to dissimilar materials. Components made of composites may contain some defects in the form of delaminations that may adversely affect their overall behavior and response when subjected to different loading systems. Interlaminar stresses (including out-of-plane stresses) are caused by the mismatch in material properties, especially in Poisson's ratio and the so-called 'coefficient of mutual influence' (between adjacent layers). The goal of this paper is to evaluate the interlaminar stresses that exist at the delamination fronts in a composite pipe, hosting a small delamination, adhesively bonded to an aluminum pipe. The aim is also to study the effect of various parameters (such as delamination length, depth, fiber orientation angles, and stacking sequence) that influence the performance, using the finite element method. The system is subjected to a torsional moment, which can be considered as a critical loading condition in tubular adhesive joints. Results of the study provide valuable information about the behavior of adhesive joints with delaminated composite adherends, and reveal the nature and distribution of interlaminar stresses along various delaminated fronts under torsional moments.  相似文献   

7.
Three-dimensional non-linear finite element analyses have been carried out to study the effects of through-the-width delaminations on delamination damage propagation characteristics in adhesively bonded single-lap laminated FRP composite joints. The delaminations have been presumed either to pre-exist or to get evolved due to coupled stress failure criteria in the laminated FRP composite adherends near the overlap ends beneath the ply adjacent to the overlap region. The out-of-plane stresses in the adhesive layer, the interlaminar stress distributions along the delamination fronts and the strain energy release rates (SERRs) corresponding to the three individual modes have been evaluated for varying positions of the delaminations pre-embedded in either of the adherends. A good matching between the present 3D results and experimental and analytical solution of the literature has been established for the undamaged and a damaged model. A significant difference in the interlaminar stresses and the SERR values has been observed and is largely dependent on the adherends (bottom or top) possessing the through-the-width delamination damages. Also, the interlaminar stresses and SERR values along the two corresponding delamination fronts are different. Accordingly, it can be concluded that the positions of the through-the-width delaminations significantly influence the delamination damage propagation behaviour vis-a-vis the performance of the composite joint.  相似文献   

8.
本文工作是通过对含不同大小分层层合板结构分析,讨论拉伸和剪切修复刚度对含层间分层损伤复合材料层合板振动特性的影响.基于修补分层损伤结构变形特点,将含损层合板的基板、上子板和下子板采用Mindlin板单元离散,而损伤区修复效应以虚拟连接单元模拟,建立相应的有限元分析模型和计算方法.通过对含损层合板的振动分析,讨论并验证本文提出的修复分层损伤模拟连接单元模型的可能性和正确性,依据拉抻和剪切修复刚度对含损层合板固有频率的分别影响与综合影响,得到对分层损伤复合材料层合板修补的指导性原则.  相似文献   

9.
受压-弯载荷作用下的脱层层板屈曲问题的有限元分析   总被引:1,自引:0,他引:1  
本文研究更复杂的受载情形 ,即有压缩载荷 ,又有弯曲载荷作用下的局部屈曲问题 ,用基于一阶剪切层板理论的几何非线性有限元法分析了受压 -弯载荷作用下含穿透脱层层板的屈曲临界载荷。给出了在不同压弯载荷比条件下的临界载荷曲线  相似文献   

10.
In this paper, growths of different types of failures including adhesion, cohesion and delamination for a single lap joint (SLJ) of composite laminates were investigated using three-dimensional geometrically nonlinear finite element analysis and by adopting a suitable modeling technique. A unique damage modeling method called sub-laminate modeling was employed for the modeling of damages of different failure modes so as to avoid the oscillatory stress and displacement fields around the damage front. The strain energy release rate (SERR) parameter was used for studying the damage growth and the individual and total components of the SERR along the various damage fronts are evaluated using the virtual crack closure technique (VCCT) based on the linear elastic fracture mechanics (LEFM) approach. This study reveals: that the opening mode is the dominant mode of the propagation for the adhesion and delamination damages, while the sliding mode is dominant for the cohesion failure; that the cohesion failure grows at a faster rate than the adhesion failure; and that the delamination front entrapped within the overlap region in the top adherend of the SLJ grows faster when the delamination damages are present simultaneously in both the adherends. This is particularly true when the delamination centers are exactly aligned with the overlap ends of the joint.  相似文献   

11.
Three dimensional non-linear finite element analyses of Lap Shear Joints (LSJs) made with curved laminated FRP composite panels having pre-existing delaminations between the first and second plies of the strap adherend have been carried out using contact and Multi-Point Constraint elements (MPC). Progressive growth of delamination has been simulated by sequential release of the MPC elements. Strain Energy Release Rate (SERR), being an indicative parameter has been computed using Virtual Crack Closure Technique (VCCT) for assessing the growth and propagation of the delamination damage fronts. The inter-laminar stresses and the SERRs at the two fronts of the pre-embedded delamination are found to be significantly influenced by the delamination size. The three individual modes of SERR on the two delamination fronts are found to be much different from each other, indicating dissimilar rates of propagation. The curvature geometry of adherends significantly influences the SERR values. It is seen that decrease of radius of curvature of adherend panels, keeping their widths unchanged, increases the SERR values. Flatter FRP composite adherends have superior resistance to delamination damage propagation as compared to LSJs made with curved composite laminated panels.  相似文献   

12.
The effect of interlayer deformation on blister test for measuring adhesive strength was analyzed by modeling the interlayer as a Winkler foundation. Critical load for the initiation of debonding along the interface between the interlayer and an elastic thin film was obtained as a function of the adhesive strength, interlayer deformation, elastic modulus of Winkler foundation, and blister size. The critical pressure increases with increasing the elastic modulus of Winkler foundation. The propagation of debonding was discussed, and the arrest of debonding was observed for the condition of constant deflection. The results provide a rational for characterizing the effect of interlayer deformation on the measurement of adhesive strength from a blister test.  相似文献   

13.
This paper deals with the evaluation of inter-laminar stresses in the adhesive layer existing between the lap and the strap adherends of lap shear joints (LSJ) made with curved laminated fibre reinforced plastic (FRP) composite panels for varied embedded delaminations between the first and second plies of the strap adherend. Non-linear finite element analyses have been carried out using contact and multi point constraint (MPC) elements. The use of contact elements ensures avoidance of inter-penetration of delaminated surfaces. Sequential release of MPC elements facilitates computation of individual modes of Strain Energy Release Rates (SERR). The effects of varied delamination lengths on variations of peel and inter-laminar shear stresses and different modes of SERR are seen to be very significant. Their variations on both the delamination fronts, for each size of the delamination, are found to be much different from each other indicating different propagation rates at the two delamination fronts. The structural integrity of the LSJ in the presence of delaminations, thus, can be predicted with adaptive finite element (FE) simulations. It is further seen that the peak stress magnitudes and SERRs are higher in the LSJs made with curved FRP composite panels as compared to the flat laminates. This may be due to the stiffening effects induced by the curvature geometry of the curved composite panels.  相似文献   

14.
Interlaminar fracture (delamination) is one of the major concerns in the design of laminated composite structures, adhesive joints, coatings, sealants and other multilayered material systems. Service lifetime of a laminated structure is limited by the time an interlaminar flaw propagates to a size perceived critical to the stiffness and/or the strength of the structure. The time required to cause certain magnitude of delamination, under stresses below the initiation stress, could be forecasted if the constitutive equation for the rate of delamination is known. This paper describes an approach to develop the constitutive equation for delamination under mode I conditions. The approach rests on principles of linear elastic fracture mechanics (LEFM) and uses elevated temperature to accelerate interlaminar fracture at constant loads. The experiments used double cantilever beam test specimens fabricated as a model system from poly(methyl methacrylate) (PMMA) beams and epoxy adhesive whose stiffness was equivalent to that of a typical carbon/epoxy laminated composite. Mechanistic observations indicated that the fracture front displayed similar mechanism at all test conditions. A modified form of Paris power law is suggested to forecast service lifetime in terms of temperature, service load and the initial flaw size.  相似文献   

15.
The low‐velocity impact behavior of a continuous glass fiber/polypropylene composite was investigated. Optical microscopy and ultrasonic scanning were used to determine the impact‐induced damage. At low impact energy, the predominant damage mechanism observed was matrix cracking, while at high energy the damage mechanisms observed were delamination, plastic deformation, which produced a residual specimen curvature, and a small amount of fiber breakage at the edge of the indentation on the impacted face of the specimens. The impact load vs. time signals were recorded during impact and showed that the load corresponding to the onset of delamination was independent of the impact energy in the range tested. The load at which the onset of delamination occurred corresponded to the values obtained by performing a linear regression of the delaminated area, obtained by ultrasonic scanning, as a function of the impact force. Tensile and flexural tests performed on impacted specimens showed that the tensile and flexural residual strengths and the flexural modulus decreased with increasing incident impact energy, while the post‐impact residual tensile modulus remained constant. The dynamic interlaminar fracture toughness was evaluated from the critical dynamic (impact) strain energy release rate of specimens with a delamination simulated by an embedded insert. The results are compared with the interlaminar fracture toughness values obtained during subcritical steady crack growth.  相似文献   

16.
Abstract

The addition of reinforcement in the through thickness direction using three-dimensional (3D) weaving techniques has been shown to improve the delamination toughness of composite materials, mitigating the reduced out of plane performance of traditional composite materials. At present, the optimum architecture for improving delamination resistance is uncertain. To address this, three geometries of 3D woven carbon fibre reinforced epoxy composites were evaluated in mode I using the double cantilever beam test method. Mode II testing was also carried out using the end loaded split and four-point end notch flexure test methods. For large delaminations (i.e. when the R curve reaches its plateau value), an orthogonal weave is found to be most effective in resisting delamination propagation in mode I and is comparable to the layer to layer architecture in mode II. In all cases, an angle interlock weave appears to be less effective than either the orthogonal or layer to layer weaves.  相似文献   

17.
板锥网壳结构是一种受力性能合理,技术经济效益良好的新型空间结构形式.本文结合复合材料力学理论和复合材料结构力学(板壳理论),采用组合结构有限元对复合材料层合板自身的局部稳定性和主要影响因素进行全面和深入的研究,研究复合材料板锥网壳结构的受力性能,为复合材料板锥网壳结构设计和层合板铺层设计提供理论上的依据,得出了可应用于工程实践的重要结论.  相似文献   

18.
An analytical model of the behavior of an adhesive‐bonded taper‐taper composite joint under axial compressive loading has been developed using the Ritz Method. The model was based on laminated beam theory. A Fourier series was used to represent the transverse displacement variable and the Ritz Method was used to derive an eigenvalue equation for adhesively bonded taper‐taper composite joint. The smallest eigenvalue is the critical buckling load. Finite element analyses were performed on two unidirectional laminated beam joints with various taper angles to verify the analytical model. The effect of varying the taper angle, adhesive thickness, and adhesive modulus on the critical buckling load was investigated analytically.  相似文献   

19.
本文基于作者提出的含层间分层损伤层合板的动力有限元分析模型和方法,计算了分层长度和位置对含层间分层损伤层合板结构的固有频率的影响,然后应用MATLAB的神经网络工具箱建立了人工神经网络,通过典型结构的仿真结果比较,证明了采用有限元动力分析和BP网络技术相结合的方法是一种可用于复合材料层合板的分层损伤诊断的有效方法.  相似文献   

20.
A polytitanocarbosilane (PTC, 20–50 mass%)–xylene solution was infiltrated into a porous, laminated woven fabric of 21–33 vol% Si-Ti-C-O fibers including 26–46 vol% mullite powder (filler) and decomposed at 1000°C in an argon atmosphere. This polymer impregnation and pyrolysis method (PIP) was repeated eight times to produce a laminated composite of 68%–85% of theoretical density. The effects of the polymer concentration and the fraction of mullite filler on the densification rate and microstructure of the layered composite were studied. The pseudoductility of the densified composite, as measured using four-point flexural testing, was caused by buckling after the elastic deformation and was followed by delamination along the direction of the layered fabric. The strength and the energy of fracture were enhanced by controlling the incorporation of mullite filler in the filament yarn (formation of a narrow pore-size distribution) and densification with a low-viscosity PTC solution. The composite with a higher strength provided a higher energy of fracture. The maximum energy of fracture reached 22 kJ/m2 in the composite with 330 MPa of strength in four-point flexure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号