共查询到20条相似文献,搜索用时 0 毫秒
1.
A four-channel multiplexed electrospray capillary electrophoresis interface has been developed. This new interface permits up to four capillary electrophoresis columns to be sampled sequentially by means of a stepper motor and a notched rotating plate assembly, which at any instant occludes all but a single sprayer. In this design, four sheath liquid electrospray probes are oriented in a circular array situated 90 degrees relative to one another. The rotating metal disk, which contains a one-quarter notch, is mounted to the stepper motor assembly and is located between the sprayers and the entrance aperture of an ion trap mass spectrometer. By using the data acquisition signal from the ion trap mass spectrometer, the scan event is synchronized with the rotation of the metal disk. With this device, four discrete sample streams can be simultaneously analyzed, resulting in a 4-fold increase in analytical throughput. 相似文献
2.
Busnel JM Schoenmaker B Ramautar R Carrasco-Pancorbo A Ratnayake C Feitelson JS Chapman JD Deelder AM Mayboroda OA 《Analytical chemistry》2010,82(22):9476-9483
A sheathless interface making use of a porous tip has been used for coupling capillary electrophoresis and electrospray ionization mass spectrometry. First, effective flow rates using the interface have been characterized. It was found that the interface is capable of generating a stable spray with flow rates ranging from below 10 nL/min to >340 nL/min, enabling its use in either the mass or concentration-sensitive region of the electrospray process. Subsequently, by analyzing peptide mixtures of increasing complexity, we have demonstrated that this platform provides exquisite sensitivity enabling the detection of very low amounts of materials with very high resolving power. Transient isotachophoresis (t-ITP) can also be integrated with this setup to increase the mass loading of the system while maintaining peak efficiency and resolution. Concentration limits of detection in the subnanomolar or nanomolar range can be achieved with or without t-ITP, respectively. The application of a vacuum at the inlet of the separation capillary further allowed the peak capacity of the system to be improved while also enhancing its efficiency. As a final step in this study, it was demonstrated that the intrinsic properties of the interface allows the use of coated noncharged surfaces so that very high peak capacities can be achieved. 相似文献
3.
A dependable and stable CZE/ESI-MS interface has been constructed. To avoid instabilities in both, the capillary electrophoretic separation and the electrospray, the second of the three concentric capillaries in the three-layered sprayer has been replaced by an aluminum-coated fused-silica capillary with an inner diameter only slightly greater than the outer diameter of the separation capillary. By this means, the otherwise often observed destruction of the separation capillary ("electrodrilling") can be avoided completely due to the suppression of electrochemical processes leading to gas bubble formation at the tip of the sprayer. With some examples taken from different biochemical areas and by separation of natural compounds, the capability and the reliability of the modified sprayer as the central part of the interface are demonstrated. 相似文献
4.
In this work, pKa values of polyglycines, poly(L-alanines), and poly(L-valines) with a number of residues up to 10 were determined in different conditions of ionic strength (10 and 100 mM) and temperature (from 15 to 60 degrees C) by capillary electrophoresis. For each peptide family, the pKa values were modeled as a function of the number of residues, the temperature, and the ionic strength. Next, using this set of experimental data, a semiempirical model was developed in order to predict pKa values for any oligopeptide having neutral lateral chains. This model only needs, as input parameters, the number of residues and the pKa of terminal amino acids in their free form. It can predict the peptide pKa values at a given ionic strength and temperature. Comparisons with experimental data from the literature demonstrated that the prediction was possible with a standard deviation of approximately 0.1 pH unit. 相似文献
5.
In this study we have evaluated the suitability of a sheathless capillary electrophoresis-electrospray ionization mass spectrometry (CE-ESI-MS) interface with a porous tip as the nanospray emitter for use in peptide analysis. A positively charged capillary coating and 0.1% formic acid as background electrolyte were used for separation upstream from mass spectrometry characterization. The influence of the distance between emitter tip and MS inlet, ESI voltage applied, and of the electroosmotic flow (EOF) on electrospray performance and efficiency of the system was investigated in detail. Under optimized conditions, less than 30 amol of a model peptide (angiotensin I) was required for a detection in the base peak electropherogram and positive identification via tandem MS. Three different cationic capillary coatings were investigated for stability, resolution, and EOF and were found to enable reproducible separations by CE-ESI-MS. After optimizing MS settings, the effectiveness of the CE-ESI-MS method developed was compared with a state-of-the-art nano-liquid chromatography (LC)-ESI-MS method by analyzing Arg-C-digested rat testis linker histones with both systems. With comparable amounts of sample applied, the number of identified peptides increased by more than 60% when using CE-ESI-MS. We found that low molecular mass peptides (below 1400 Da) were preferentially identified by CE-ESI-MS, since this group of peptides poorly interacted with the reversed-phase material in the nano-LC system. Finally, total analysis time in LC-ESI-MS for three runs including equilibration was nearly 4 times longer than that of CE-ESI-MS: 246 versus 66 min. 相似文献
6.
A wire loop deployed at the tip of a capillary electrophoresis system has been investigated as a means of quantitative injection. A thin film of a liquid is formed on the loop, the loop is transferred to a sealed chamber, and then pneumatic pressure is applied to introduce the contents of the loop into the capillary. As long as the applied pressure is below a certain threshold, no air is introduced into the capillary, even after the loop contents have been fully introduced. Sample surface tension and viscosity do not have a significant effect on the injected volume. The small loop injection technique appears to be a robust and reproducible alternative to presently practiced approaches to sample injection in CE. 相似文献
7.
Belov ME Prasad S Prior DC Danielson WF Weitz K Ibrahim YM Smith RD 《Analytical chemistry》2011,83(6):2162-2171
Liquid chromatography (LC)-triple quadrupole mass spectrometers operating in a multiple reaction monitoring (MRM) mode are increasingly used for quantitative analysis of low-abundance analytes in highly complex biochemical matrixes. After development and selection of optimum MRM transitions, sensitivity and data quality limitations are largely related to mass spectral peak interferences from sample or matrix constituents and statistical limitations at low number of ions reaching the detector. Herein, we report on a new approach to enhancing MRM sensitivity by converting the continuous stream of ions from the ion source into a pulsed ion beam through the use of an ion funnel trap (IFT). Evaluation of the pulsed MRM approach was performed with a tryptic digest of Shewanella oneidensis strain MR-1 spiked with several model peptides. The sensitivity improvement observed with the IFT coupled in to the triple quadrupole instrument is based on several unique features. First, ion accumulation radio frequency (rf) ion trap facilitates improved droplet desolvation, which is manifested in the reduced background ion noise at the detector. Second, signal amplitude for a given transition is enhanced because of an order-of-magnitude increase in the ion charge density compared to a continuous mode of operation. Third, signal detection at the full duty cycle is obtained, as the trap use eliminates dead times between transitions, which are inevitable with continuous ion streams. In comparison with the conventional approach, the pulsed MRM signals showed 5-fold enhanced peak amplitude and 2-3-fold reduced chemical background, resulting in an improvement in the limit of detection (LOD) by a factor of ~4-8. 相似文献
8.
A novel water-cooled mid-infrared fiber-optic probe is described which is heatable to 230 °C. The probe has chalcogenide fibers and a ZnSe internal reflection element and is compact and fully flexible, allowing access to a wide range of standard laboratory reaction vessels and fume cupboard arrangements. Performance is demonstrated via the in situ analysis of an acid-catalyzed esterification reaction in toluene at 110 °C, and the results are compared with those from a conventional extractive sampling loop flow cell arrangement. Particular emphasis is given to the quantitative interpretation of the spectroscopic data, using gas chromatographic reference data. Calibration data are presented for univariate and partial least squares models, with an emphasis on procedures for improving the quality of interpreparation calibration and prediction through the use of focused reference analysis regimes. Subset univariate procedures are presented that yield relative errors of <5%, and bias-corrected partial least squares procedures are described that result in relative errors of interpreparation calibration and prediction consistently <3%. This paper demonstrates the considerable power of fiber-optic mid-IR spectroscopy combined with bias correction partial least squares procedures for the efficient in situ quantitative analysis of laboratory scale reactions. 相似文献
9.
On-line hyphenation of capillary isoelectric focusing and capillary gel electrophoresis by a dialysis interface 总被引:3,自引:0,他引:3
An on-line two-dimensional (2D) capillary electrophoresis (CE) system consisting of capillary isoelectric focusing (CIEF) and capillary gel electrophoresis (CGE) was introduced. To validate this 2D system, a dialysis interface was developed by mounting a hollow fiber on a methacrylate resin plate to hyphenate the two CE modes. The two dimensions of capillary shared a cathode fixated into a reservoir in the methacrylate plate; thus, with three electrodes and only one high-voltage source, a 2D CE framework was successfully established. A practical 2D CIEF-CGE experiment was carried out to deal with a target protein, hemoglobin (Hb). After the Hb variants with different isoelectric points (pIs) were focused in various bands in the first-dimension capillary, they were chemically mobilized one after another and fed to the second-dimension capillary for further separation in polyacrylamide gel. During this procedure, a single CIEF band was separated into several peaks due to different molecular weights. The resulting electrophoregram is quite different from that of either CIEF or CGE; therefore, more information about the studied Hb sample can be obtained. 相似文献
10.
A sheathless interface based on a total consumption micronebulizer operating at flow rates in the range 0.5-7.5 microL min(-1) was developed between capillary HPLC and ICPMS. It allowed the efficient nebulization and transport into the plasma of mobile phases containing up to 100% organic solvent without either cooling the spray chamber or oxygen addition. The coupled system was applied to selenopeptide mapping in a protein fraction isolated from a selenized yeast extract. The detection limits were 150 (80Se) and 200 fg (82Se) for a quadrupole instrument with and without a collision cell, respectively, which is a factor 100-150 less than that reported elsewhere for HPLC-ICPMS. The minimal peak broadening ( approximately 5 s at the half-height) allowed baseline resolution of a mixture containing more than 30 selenopeptides, many of which could not be separated using the conventional HPLC-ICPMS coupling. 相似文献
11.
Cao CX He YZ Li M Qian YT Gao MF Ge LH Zhou SL Yang L Qu QS 《Analytical chemistry》2002,74(16):4167-4174
The paper presents a novel on-line transient moving chemical reaction boundary method (tMCRBM) for simply but efficiently stacking ionizable analytes in high-salt matrix in capillary zone electrophoresis (CZE). The powerful function and stability of the tMCRBM are elucidated with the ionizable test analytes of L-phenylalanine (Phe) and L-tryptophan (Trp) in the matrix with 85.6-165.6 mM sodium ion and further compared with the normal CZE of Phe and Trp samples dissolved in running buffer. The results verify that (1) the on-line tMCRBM mode can evidently increase separation efficiency, peak height, and resolution, (2) with the mode, the analytes in a 28-cm high-salt matrix plug can be stacked successfully and further separated well, (3) the values of relative standard deviation of peak height, peak area, and migrating time range from 3.9% to 6.1%; the results indicate the high stability of the technique of tMCRBM-CZE. The techniques implies obvious potential significance for those ionizable analytes, e.g., protein, peptide, and weak alkaline or acidic compound, in such matrixes as serum, urine, seawater, and wastewater, with high salt, which has a deleterious effect on isotachophoresis (ITP) and especially on electrostacking and field-amplified sample injection (FASI). The mechanism of stacking of zwitterionic analytes in a high-salt matrix by the tMCRBM relies on non-steady-state isoelectric focusing (IEF) but not on transient ITP, electrostacking, and FASI. 相似文献
12.
Application of mild vibration to an immobilized trypsin capillary microreactor can enhance digestion rates for many globular and glycosylated proteins (12-70-kDa range) without additional sample handling. A sinusoid wave form generator and a simple piezoelectric transducer were used to apply vibration in a wide frequency range to the 50-μm-i.d. enzyme microreactor over its entire length. The mass transport properties of the microreactor were quantitatively examined for protein digestions through the use of an artificial globular protein. This was synthesized by covering the surface of 35-nm-diameter latex beads with a peptide (Leu-Arg-Leu). Capillary electrophoresis analysis of the microreactor products showed there were no mass transport-related effects for vibration of the capillary. Digestions of a range of globular protein structures were performed and the products analyzed by capillary electrophoresis. The rate enhancements were found to be related to the stability of the protein tertiary and secondary structure. Cytochrome c showed a dramatic acceleration in rate of digestion as the vibration frequency increased over a range of 200 Hz to 7.1 kHz. The ability to enhance reaction rates for very stable proteins can be gained by additional means of destabilizing the protein, as shown by removal of calcium from α-lactalbumin. Vibration of the enzyme capillary will have the greatest utility for extremely limited protein samples since chemical modification to completely denature proteins usually requires considerable sample handling. 相似文献
13.
A method is presented to quantify intermediate-abundance proteins in human serum using a single-quadrupole linear ion trap mass spectrometer-in contrast, for example, to a triple-quadrupole mass spectrometer. Stable-isotope-labeled (tryptic) peptides are spiked into digested protein samples as internal standards, aligned with the traditional isotope dilution approach. As a proof-of-concept experiment, four proteins of intermediate abundance were selected, coagulation factor V, adiponectin, C-reactive protein (CRP), and thyroxine binding globulin. Stable-isotope-labeled peptides were synthesized with one tryptic sequence from each of these proteins. The normal human serum concentration ranges of these proteins are from 1 to 30 microg/mL (or 20 to 650 pmol/mL). These labeled peptides and their endogenous counterparts were analyzed by LC-MS/MS using multiple reaction monitoring, a multiplexed form of the selected reaction monitoring technique. For these experiments, only one chromatographic dimension (on-line reversed-phase capillary column) was used. Improved limits of detection will result with multidimensional chromatographic methods utilizing more material per sample. Standard curves of the spiked calibrants were generated with concentrations ranging from 3 to 700 pmol/mL using both neat solutions and peptides spiked into the complex matrix of digested serum protein solution where ion suppression effects and interferences are common. Endogenous protein concentrations were determined by comparing MS/MS peak areas of the endogenous peptides to the isotopically labeled internal calibrants. The derived concentrations from a normal human serum pool (neglecting loss of material during sample processing) were 9.2, 110, 120, and 246 pmol/mL for coagulation factor V, adiponectin, CRP, and thyroxine binding globulin, respectively. These concentrations generally agree with the reported normal ranges for these proteins. As a measure of analytical reproducibility of this single-quadrupole assay, the coefficients of variance based on 12 repeated measurements for each of the endogenous tryptic peptides were 17.0, 25.4, 24.2, and 14.0% for coagulation factor V, adiponectin, CRP, and thyroxine binding globulin, respectively. 相似文献
14.
Intracellular fluid within single human erythrocytes is analyzed by capillary electrophoresis with laser-excited native protein fluorescence. Good signal-to-noise is achieved, allowing even minor components to be quantified. Non-Gaussian distributions were found for total protein, fraction carbonic anhydrase, fraction hemoglobin A0, and an unidentified component. Variations among a group of 29 cells for each quantity are as much as 1 order of magnitude, even though erythrocytes are known to be fairly homogeneous in size distribution. Variations in fraction hemoglobin A0 reflect differences in in vitro oxidation rates to methemoglobin. A positive correlation was observed between carbonic anhydrase and hemoglobin A0 for individual cells. This is consistent with the presence of erythrocytes of different ages within the population, with the older cells being less capable of maintaining enzyme activity and preventing oxidative damage. 相似文献
15.
A new technique for esterification of an acid monolayer at the gas-water interface has been introduced. This novel process termed phase controlled surface reaction (PCSR), utilizes Gibbs' surface energies to ensure reaction in an environment that would normally inhibit it. Because surface energies are important in numerous environments, PCSR should work with many condensation reactions. The addition of a benzyl alcohol subphase to water leads to a concentration of excess benzyl alcohol at all water interfaces including the gas-water interface. This surface enriched benzyl alcohol zone reacts with a polymerized monolayer present at the gas-water interface. FT-IR characterization of the deposited reacted monolayer shows that up to 70% of the monolayer molecules have been reacted. Further experiments indicate that the degree of conversion is dependent on the pH of the water subphase. Preliminary studies of electron lithographic patterning of the deposited product indicates that it is more electron sensitive than the original monolayer. PCSR may thus be a method by which chemical changes can be made in an existing monolayer, without altering its structure. 相似文献
16.
When coupling capillary electrophoresis with postcolumn detection methods, such as mass spectrometry, the presence of postcolumn band broadening must be considered. The band broadening effects introduced by junction-at-the-tip CE-MS interfaces using a postcolumn micro flow-through vial are investigated by studying the hydrodynamic flow patterns and mass transport process inside the micro vial at the end of the CE separation capillary. Simulation results obtained by solving the Navier-Stokes and mass balance equations provide insights into the velocity field and concentration distribution of the analytes in the micro vial and demonstrate that, with a low flow rate of chemical modifier solution, the laminar flow streams confine the analyte molecules to the central part of the micro vial and thus maintain major features of the peak shapes. Peaks detected by UV and MS under similar experimental conditions were compared to verify the numerical prediction that the main features of the UV peak can be retained in the MS peak. Experiments also show that band broadening can be minimized when an appropriate chemical modifier flow rate is selected. 相似文献
17.
An in situ liquid gallium-gas interface chemical reaction route has been developed to synthesize semiconducting hollow GaN nanospheres with very small shell size by carefully controlling the synthesis temperature and the ammonia reaction gas partial pressure. In this process the gallium droplet does not act as a catalyst but rather as a reactant and a template for the formation of hollow GaN structures. The diameter of the synthesized hollow GaN spheres is typically 20-25 nm and the shell thickness is 3.5-4.5 nm. The GaN nanotubes obtained at higher synthesis temperatures have a length of several hundreds of nanometers and a wall thickness of 3.5-5.0 nm. Both the hollow GaN spheres and nanotubes are polycrystalline and are composed of very fine GaN nanocrystalline particles with a diameter of 3.0-3.5 nm. The room-temperature photoluminescence (PL) spectra for the synthesized hollow GaN spheres and nanotubes, which have a narrow size distribution, display a sharp, blue-shifted band-edge emission peak at 3.52 eV (352 nm) due to quantum size effects. 相似文献
18.
Toshihisa Nishioka Zhi-Dong Zhou Jia-Huan Yu 《International Journal of Fracture》2006,142(3-4):241-254
The report of Lambros and Rosakis [(1995) J Mech Phys Solids 43(2): 169–188] has focused attention on steady-state transonic
interfacial crack growth accounting for the phenomenon of crack face contact in elastic/rigid bimaterial but could not handle
issues relating to energy transmission across the interface. The present paper attempts to provide a complete explicit expression
of the asymptotic fields induced by transonically propagating interfacial crack in elastic/elastic bimaterial for in-plane
case. The energy distribution on the contact area, crack tip and two singular characteristic lines is analysed thoroughly
and compared with the dynamic separated J-integrals. The length of the contact zone is also discussed briefly by establishing
energy fracture criterion that satisfies contact condition. The two-dimensional in-plane asymptotic deformation field surrounding
the contact area of a crack propagating transonically along an elastic/elastic bimaterial interface is observed and discussed
thoroughly. 相似文献
19.
Pazourek J Revilla AL Gajdosová D Havel J 《Drug development and industrial pharmacy》2004,30(2):125-134
A capillary zone electrophoretic method with indirect UV-detection for determination of rimantadine, an antiviral drug against influenza A, in tablets was validated. Instrumental precision, the method precision, accuracy, calibration curve linearity, selectivity, robustness, and time stability of the sample and the standard were tested. The method was also applied to monitor dissolution tests of the tablets. The possibility of addition of an internal standard for improvement of the method precision was discussed. 相似文献
20.
J Li P Thibault N H Bings C D Skinner C Wang C Colyer J Harrison 《Analytical chemistry》1999,71(15):3036-3045
This report describes the development of a compact and versatile, micromachined chip device enabling the efficient coupling of capillary electrophoresis to electrospray mass spectrometry (CE-ESMS). On-chip separation provides a convenient means of achieving rapid sample cleanup and resolution of multicomponent samples (typically 2-5 min) prior to mass spectral analysis. A low dead volume connection facilitating the coupling of microfabricated devices to CE-ESMS was evaluated using two different interfaces. The first configuration used disposable nanoelectrospray emitters directly coupled to the chip device via this low dead volume junction, thereby providing rapid separation of complex protein digests. The performance of this interface was compared with that of more traditional configurations using a sheath flow CE-ESMS arrangement where a fused-silica capillary of varying length enabled further temporal resolution of the multicomponent samples. The sensitivity and analytical characteristics of these interfaces were investigated in both negative and positive ion modes using standard peptide mixtures. The separation performance for synthetic peptides using a chip coated with amine reagent ranged from 26,000 to 58,000 theoretical plates for a sheath flow CE-ESMS interface comprising a 15-cm CE column. Replicate injections of a dilution series of peptide standards provided detection limits of 45-400 nM without the use of on-line preconcentration devices. The reproducibility of migration time ranged from 0.9 to 1.5% RSD whereas RSDs of 5-10% were observed on peak areas. The application of these devices for the analysis of protein digests was further evaluated using on-line tandem mass spectrometry. 相似文献