首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
基于动态膜生物反应器(DMBR),采用批式试验研究了尼龙网膜基材孔径(200、300、500目)和颗粒活性炭(GAC)投加量(0. 5、1、2、3 g/L)对GAC/DMBR复合工艺运行效果的影响,并基于优化结果进一步通过连续运行工艺试验考察了其对污水的处理效能。批式试验结果表明,采用不同孔径的膜基材时出水浊度无明显差别,但是200目的膜基材表现出更高的稳定通量[65 L/(m~2·h)];当GAC投加量为2 g/L时,GAC/DMBR复合工艺的处理效果和过滤性能最优。连续运行工艺试验结果表明,与空白组(DMBR)相比,GAC/DMBR复合工艺的出水通量显著提升,出水浊度稳定在1 NTU左右,且对污染物的去除效果较好,溶解性胞外聚合物(SEPS)含量降低,污泥性能得到了改善。  相似文献   

2.
构建了以200目的不锈钢网、尼龙网和尼龙网附加支撑材料(1 cm孔径的钢丝网)为膜基材的三种不同动态膜组件,并应用于动态膜生物反应器(DMBR)中处理城市生活污水。通过观察通量和浊度的变化情况,考察了不同膜组件长期运行时的过滤性能,比较了不同清洗方式对动态膜再生效果的影响。结果表明,三种反应器中动态膜的形成时间均较短,浊度均能在短时间内(20 min)降至1 NTU以下,物理清洗后动态膜的再生效果稳定,其中尼龙网附加钢丝网后具有更高的稳定通量[80~105 L/(m~2·h)]及持续运行时间(3 d)。不同膜组件对污染物的去除效果相当,对COD的平均去除率均大于87%,对NH_4~+-N的去除率均大于97%。  相似文献   

3.
针对矿井水混凝处理过程中投加的聚合氯化铝(PAC)残留物对超滤膜的污堵问题,采用在聚偏氟乙烯(PVDF)超滤膜前投加不同量的PAC对矿井水进行混凝和超滤试验,考察PAC不同投加量下浊度、污染指数(SDI)、残留铝含量、跨膜压差(TMP)和归一化膜比通量(NSF)间的相互关系及对超滤膜的影响。结果表明:当PAC投加量为35~40 mg/L时,混凝上清液中SDI最小为5. 3,残留铝含量约为0. 16~0. 23 mg/L,浊度约为6. 0~8. 0 NTU。跨膜压差随着PAC投加量、残留铝含量和pH值的增加而上升。当PAC投加量为40 mg/L、残留铝含量为0. 18 mg/L、pH值为4. 2~5. 2时,跨膜压差(TMP)最小值约为64. 8~68. 4 kPa。水中残留铝存在形态在不同pH值条件下可相互转化,其聚合态和絮凝体粒径又影响着超滤膜污染,酸性条件(pH值为4. 2~5. 2)下更有助于减少残留铝对超滤膜的污染。  相似文献   

4.
本研究以近期台风天降雨时水源水为研究对象,模拟混凝沉淀工艺烧杯试验,改变聚合氯化铝(PAC)投加量、聚丙烯酰胺(PAM)投加量和水源水p H值因素,进行单因素实验和正交实验确定最佳混凝条件为PAC投加量为6 mg/L,PAM投加量为20μg/L,生产用水p H调为8.5。在上述最佳处理条件下,水源水浊度由48.5NTU经过10分钟的沉淀降为3.4NTU,浊度去除率为92.99%,有效减轻滤池的过滤负荷。  相似文献   

5.
在实验室运用二次通用旋转组合设计研究苏州河道水处理工艺,系统分析了磁絮凝工艺处理苏州河道水的四个影响因素(PAC投加量、PAM投加量、磁粉投加量、沉淀时间)对磁絮凝效果的影响效应。并运用方差分析、回归模型方程分析、单因子效应分析以及双因素交互效应分析,得出最佳工况为PAC投加量15 mg/L、PAM投加量0.58 mg/L、磁粉投加量2.7 mg/L、沉淀时间2.1 min,此时理论上浊度可达到0.73 NTU,浊度去除率为97.2%,用此参数进行试验,得到实际浊度为0.82 NTU,实际浊度去除率可达96.9%。  相似文献   

6.
在常规处理条件下,对西南地区突发性非多砂高浊度原水进行了加药条件优化试验.结果表明,采用单级絮凝、分级沉淀工艺,先投加PAC,60~120 s后投加PAM,对高浊度原水有良好的去除效果.原水浊度为15 000 NTU时,投加200 mg/L PAC、0.4~0.5 mg/L PAM,静沉30 min后.出水浊度为1.7...  相似文献   

7.
采用500目的尼龙网为膜基材构建了动态膜生物反应器(DMBR),研究了DMBR对生活污水的处理效果以及动态膜的形成与再生过程。在连续进水、侧向曝气、定期刷洗和重力自流出水的条件下,DMBR稳定运行了30 d,对COD、NH+4-N、TP、浊度的平均去除率分别为89.0%、98.9%、46.5%、94.1%,出水水质良好。动态膜形成时间短,约为180 min,而后膜通量和出水浊度分别稳定在46~50 L/(m2·h)和0.17~0.20 NTU,并且动态膜再生过程简单,刷洗可以有效地破坏膜表面附着的泥饼层,恢复动态膜的过滤性能。  相似文献   

8.
以苏州护城河水为研究对象,比较了PAC、PAFC及PAC+PAM的组合投加方式对低温低浊水的处理效果。试验表明,PAC的试验效果略好与PAFC。当PAC的投加量为65mg/L时,水中浊度的去除率为71.71%。投加PAM可有效降低PAC的投药量,当PAC的投加量为33mg/L,PAM的投加量为0.5~1.0mg/L时,出水浊度稳定在2.50NTU左右。  相似文献   

9.
以西安第四自来水厂滤池反冲洗废水为对象,进行了造粒流化床处理含铁锰反冲洗废水的生产性试验研究。该工艺优化的运行参数如下:上升流速为30 cm/min,搅拌转速为2 r/min,PAC投加量为5~7 mg/L,PAM投加量为0.7~1 mg/L,间歇排泥间隔为42 h。在上述运行条件下,当进水浊度为65~100 NTU时出水浊度小于1 NTU,铁、锰含量分别低于0.3 mg/L和0.2mg/L,出泥含水率约为93.7%,污泥浓度约为72 g/L,处理成本约为0.16元/m~3。且当进水浊度在10~600 NTU或上升流速在15~45 cm/min变化时,出水浊度仍可保持在3 NTU以下。实际工程运行效果表明,造粒流化床处理该废水具有出水水质好、抗冲击负荷能力强、污泥浓缩效果好、处理成本低的优点。  相似文献   

10.
PAC-自生动态膜生物反应器处理生活污水的研究   总被引:3,自引:0,他引:3  
向由孔径为56μm的普通工业滤布组成的膜生物反应器中投加不同量的粉末活性炭,对恒通量下的单周期运行情况进行了考察,并对被污染的动态膜表面和截面进行了扫描电镜观察。结果表明,较佳的PAC投量约为2g/L。在PAC投量为2g/L时,其运行周期(15d)为不投加PAC时(6d)的2.5倍,反应器中占优势的污泥平均粒径(100μm)也较不投加PAC时的(80μm)大。经扫描电镜分析可知,未投加PAC时膜孔隙间的凝胶层是造成膜污染的主要因素;投加2异/L的PAC时膜表面的滤饼层是造成膜污染的主要因素,其膜污染物易于清洗去除,经水力清洗和刷子刷洗后膜通量可基本恢复,再用0.5%的NaClO溶液浸泡12h后膜通量可完全恢复。  相似文献   

11.
针对陶瓷生产废水悬浮物高、浊度高、有机污染物含量少等特点,基于混凝Zeta电位及絮体粒径分布特征,筛选出适合处理陶瓷生产废水的混凝剂。以混凝沉淀出水浊度为优化指标,通过比较混凝剂投加量和沉淀时间对天津某陶瓷厂生产废水的混凝处理工艺进行优化。试验结果表明,在原水浊度为2 100 NTU、p H值为7.91、温度约为20℃条件下,投加70 mg/L的PAC和5 mg/L的PAM,沉降60 min,出水浊度为2.96 NTU,去除率达到99.86%。经过半年的实际运行,改进工艺的出水水质满足生产回用要求。经济分析表明,采用PAC+PAM强化混凝工艺处理陶瓷生产废水并回用,具有较好的经济效益。  相似文献   

12.
处理低温、低浊宁波白溪水库水的混凝剂优化   总被引:2,自引:0,他引:2  
通过烧杯试验,考察了聚合氯化铝(PAC)、聚合硫酸铁(PFS)及两者分别与聚二甲基二烯丙基氯化铵(PDM)复配后对低温、低浊白溪水库水的除浊效果。结果表明:对温度〈10℃、浊度约为1.5NTU的原水,在试验确定的混凝搅拌条件下,PFS的处理效果最佳,在3mg/L的投量下可使剩余浊度〈0.2NTU;投加PAC时,能在2.5mg/L的投量下将剩余浊度降至最低,为0.8NTU。PDM与PFS复配后,最低能使剩余浊度降至0.4NTU左右,除浊效果比单独使用PFS时差;PDM与PAC复配后,没有明显的除浊效果。PFS可用于对低温、低浊白溪水库水的混凝处理,PDM不适宜作为其强化混凝的助凝剂。  相似文献   

13.
为了考察粉末活性炭(PAC)和超滤(UF)的协同作用,构建了PAC/UF短流程工艺小试装置,研究了该工艺对微污染水源水中有机物的去除效果,并对膜污染特性进行了综合评价。结果表明,在保证DOC和UV_(254)去除效果的前提下,PAC的最佳投加量为50 mg/L、最佳吸附时间为2 h;在最佳投加量下,PAC吸附时间从10 min增至120 min时,UF膜的可逆污染阻力由5. 91×10~(11)m~(-1)降至5. 20×10~(11)m~(-1);在最佳吸附时间内,PAC投加量从25 mg/L增至100 mg/L时,UF膜的可逆污染阻力由5. 70×10~(11)m~(-1)降至5. 12×10~(11)m~(-1)。通过对PAC吸附前后原水的分子质量分布、亲疏水性以及三维荧光进行测定,初步揭示了PAC缓解膜污染的机理,PAC吸附主要通过去除疏水性小分子有机物和腐殖酸等大分子有机物引起的不可逆污染来缓解膜污染。  相似文献   

14.
研究了采用PAC-UF组合工艺处理含有腐殖酸的水时,PAC投加量对膜通量、有机物去除率和膜污染阻力的影响。结果表明,有机物去除率随PAC投加量的增加而提高;膜通量在低PAC投加量下得到提高,在高PAC投加量下降低;水中腐殖质类有机物主要造成不可逆膜污染;PAC投加量为20 mg/L时,能有效降低不可逆污染阻力,缓解膜污染。  相似文献   

15.
采用投加粉末活性炭(PAC)的膜生物反应器(MBR)复合工艺——PAC/MBR处理微污染地表水,考察了对浊度、CODMn和氨氮的去除效果。膜生物反应器的有效容积为4m3,采用聚偏氟乙烯平板膜,膜孔径为0.09~0.12μm,总膜面积为85.2m2;MBR的进水流量为1200L/h,一次性投加PAC为1g/L,气水比为5∶1;采用恒压操作、间歇抽吸方式出水,操作压力为0.1MPa,抽停比为8min/2min。中试结果表明,该工艺对沉淀池出水中浊度、CODMn和氨氮的平均去除率分别为98%、33%和53%,能抵抗水质和水温变化的冲击,有效保障出水水质。在PAC/MBR系统中,PAC吸附、生物降解和膜截留作用在去除不同分子质量有机物的过程中具有较好的互补性。投加PAC有助于在膜表面形成稳定的生物活性炭动态膜,保证了恒定的出水流量。  相似文献   

16.
针对常规工艺对连云港地区受污染水源水处理效果有限的问题,进行了中置式高密度沉淀池中试研究。结果表明,增大污泥回流比和PAC投加量能够有效降低出水浊度;投加PAM可以提高回流污泥浓度,降低混凝剂用量,改善絮凝效果。当回流比为0.040,PAM投加量为0.08mg/L,PAC投加量为25 mg/L时,出水浊度为1.0 NTU。  相似文献   

17.
藻类是水源水的微污染物,其大量生长将给水厂制水和饮水安全带来诸多影响。试验对比了次氯酸钠氧化除藻,硫酸铝、聚合氯化铝(PAC)混凝沉淀除藻以及氧化和混凝联合除藻的效果,并对次氯酸钠、硫酸铝、聚合氯化铝的投加量以及处理时间进行了优化,确定了经济合理的除藻方案。结果表明,当次氯酸钠投加量为30 mg/L、接触氧化时间为20 min时,除藻率为95.4%;当硫酸铝投加量为140 mg/L时,除藻率为87.3%;当聚合氯化铝投加量为120 mg/L时,除藻率为87.1%;在25 mg/L次氯酸钠+120 mg/L硫酸铝条件下,除藻率为98.3%,沉后水浊度为0.411 NTU;在25 mg/L次氯酸钠+110 mg/L聚合氯化铝条件下,除藻率为98.0%,沉后水浊度为0.379 NTU。次氯酸钠的助凝作用大大强化了混凝沉淀效果,从而使沉后水浊度降低,既有效提高了除藻率,又减轻了水厂后续工艺的负荷。  相似文献   

18.
针对某煤矿富含高岭土的矿井水难以处理的问题,对絮凝剂PAM和PAC的选用及最佳投量进行了试验。结果表明:阳离子PAM的絮凝效果显著优于阴离子、非离子PAM的;原采用的普通型PAC配合PAM不能有效去除高岭土颗粒,而高效液体型PAC在投加量仅为普通型PAC的1/3的条件下,处理出水浊度可降至4.2~8.4 NTU。因此,实际工程确定选用阳离子PAM和高效液体型PAC药剂,投加量分别为0.25、50 mg/L,处理效果得到了显著提高,但反渗透进水SDI值仍常有超过3的情况出现。为此,在一级过滤泵前增加二次絮凝工艺(投加3~5 mg/L的PAC),保证反渗透进水SDI值稳定在3以下,达到了设计要求。  相似文献   

19.
PAC和PAM复合混凝剂处理垃圾渗滤液的研究   总被引:4,自引:1,他引:3  
通过投加混凝剂聚合氯化铝(PAC)和助凝剂聚丙烯酰胺(PAM)对垃圾渗滤液进行混凝沉淀处理,根据单因素和正交试验确定其最佳工艺条件.结果表明,混凝的最佳条件:PAC投加量为750 mg/L、PAM投加量为15 mg/L、快速(150 r/min)搅拌1 min、中速(45 r/min)搅拌6min、慢速(35 r/min)搅拌7 min、在快速混合之后投加助凝剂.在该处理条件下,系统对垃圾渗滤液中COD和浊度的去除率达到最大,分别为27.45%和65.80%.  相似文献   

20.
采用在活性炭滤池前端投加不同药剂的方法深度净化某水厂沉淀池出水,考察了不同滤池形式、聚合氯化铝(PAC)投加量和阳离子型聚丙烯酰胺(PAM)投加量对沉后水浊度的去除效果。结果表明,在下向流滤池前端投加0.3 mg/L的PAC和0.03 mg/L的PAM可以明显强化活性炭滤池的过滤效果,使出水浊度小于0.1 NTU;与砂滤池出水相比,活性炭滤池对浊度的去除率提高了16.6%,CODMn去除率提高了56%;相应的滤池水头损失增加较快,但仍可以满足运行周期不小于24 h的设计要求;滤后水中铝和溴酸盐含量均满足《生活饮用水卫生标准》(GB 5749—2006)要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号