首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对影响提高扇形段在线辊缝控制精度的问题,分析对比了扇形段的主要几种结构型式及存在的不足,研发出了具有自主知识产权的无间隙辊缝调节扇形段,并在多台板坯连铸机上成功运用。对于扇形段刚度引起的辊缝控制偏差,基于仿真分析与样机测试相结合的方法,获得了扇形段在不同夹紧液压缸压力条件下的弹性变形量,通过该变形量对辊缝进行补偿,提高了在线辊缝控制精度,获得良好的应用效果。对于扇形段不同倾动角度的影响,通过对扇形段在不同倾动角度条件下的受力分析,推导获得了扇形段不同倾动角度与进出口辊缝偏差之间的补偿关系。研究所提出的改进方法对实现扇形段辊缝的在线精准控制具有重要的指导意义。  相似文献   

2.
针对三铰链点结构型式扇形段存在的不足之处,研发了无间隙辊缝调节扇形段,并在连铸生产中进行了应用。在研发过程中通过有限元仿真分析和样机的测试,掌握了扇形段强度、刚度及倾动对辊缝精度的影响,并提出补偿措施,达到对扇形段辊缝精确控制的目的。新扇形段辊缝精度较铰链点结构型式扇形段有显著提升,在线辊缝精度达到±0.5mm以内,消除了二冷导向段锯齿形辊缝现象,使辊缝收缩更平滑。在动态轻压下实施过程中,消除了辊缝升降过程中的累计误差,能够对扇形段的弹性变形量进行补偿,对压下量的控制更精确。扇形段在生产中辊缝控制更稳定,维护更方便。  相似文献   

3.
郭勇 《中国冶金》2020,30(2):89-94
宝钢湛江2 300 mm连铸机由罗泾原2台单流连铸机改造建设而成,由于其扇形段固有的三铰链点结构,实际在线辊缝精度通常超过±2 mm,有时甚至高达±5 mm,不能满足生产要求。根据扇形段辊缝控制原理,通过辊缝折算获得精确的辊缝反馈值,实现对扇形段辊缝的自动控制。对辊缝间隙产生原因进行分析,提出辊缝间隙控制技术。实际应用表明,该辊缝间隙控制技术可以使扇形段辊缝离线和在线精度分别控制在±0.2和±0.5 mm以内,有效保证设备功能精度和状态稳定,为2 300 mm连铸机提高产品质量和发挥产能优势创造有利条件,并对扇形段设计和改造具有一定的借鉴意义。  相似文献   

4.
曹磊 《中国冶金》2015,25(1):45-49
在工业试验的基础上,对宽厚板连铸机实施动态轻压下后连铸坯中心偏析严重的原因进行了探讨与分析。研究发现:扇形段辊缝实测值与位移传感器测量值之间存在差值,且每个位置差值的偏差较大,导致压下量的实际执行量存在较大偏差,是产生严重中心偏析的重要原因。通过扇形段开口度测量与标定方法的优化改进,将每个扇形段不同位置的辊缝实际值与位移传感器测量值的差值保持在标准差值a,连铸机扇形段的辊缝得到了精确控制,动态轻压下工艺参数得到了精确执行,连铸坯内部质量得到了较大改善。  相似文献   

5.
结合大板坯连铸机辊缝实际测量数据和扇形段结构特征的分析,查明了引起扇形段内部辊缝变大的主要原因。基于扇形段内弧辊架梁受力特征的分析,提出了一种扇形段预变形优化方法。按照扇形段内部辊缝变大的程度确定铸机实施调整的区域,实施后将扇形段内部辊缝增大量控制在0.2mm以内。  相似文献   

6.
何新军  何小群 《炼钢》2021,37(5):35-40
扇形段辊缝的优化设计与控制是连铸生产中的重要工艺.通过有限元仿真及样机实测对扇形段拉杆变形及框架挠度进行评估,分析了浇铸过程中影响扇形段变形主要铸坯反力,提出了基于扇形段受力预测模型的动态辊缝控制方法,实现了扇形段变形动态补偿.生产结果表明,扇形段辊缝控制精度达±0.15 mm,板坯厚度规格满足工艺要求,生产钢种铸坯中...  相似文献   

7.
为了满足厚板连铸大压下扇形段工艺要求,实现大压下扇形段高精度辊缝调节功能,开发出一套同时具有大压下和轻压下功能的液压系统。该液压系统采用三通伺服阀控制液压缸的形式调节扇形段辊缝,背压腔压力采用比例减压阀控制,实现大压下与轻压下功能切换。从节能角度确定了液压动力元件参数,对主要元件进行计算分析,建立辊缝系统的控制模型。利用MATLAB仿真软件对辊缝系统模型进行了动态仿真分析,得出了相关评价指标。最后结合设备结构,通过相关计算及补偿,取得了较好的辊缝精度控制效果。  相似文献   

8.
罗木 《宽厚板》2009,15(4):34-38
传统的扇形段辊缝调节主要通过辊缝调节电机、齿轮箱、万向接轴来带动扇形段上框架上下动作。目前新设计扇形段辊缝调节方式,通常靠液压进行调节,在上位机上进行操作,调整精度高,调整速度快。本文主要描述了远程辊缝液压调节的设备构成,重点介绍了实现其动作的比例阀及位移传感器的工作原理;并根据连铸机现场控制程序,归纳出扇形段辊缝计算公式,通过PID控制模型,实现扇形段辊缝的远程调整。  相似文献   

9.
为满足铸坯规格多样化和提高铸坯产品质量的要求,连铸机扇形段需要具备辊缝自动调节功能。为此,江西新余钢铁公司的厚板坯连铸机使用扇形段辊缝控制技术,通过辊缝折算获得精确的扇形段辊缝反馈,采用位置控制、同步控制和框架变形补偿等方法实现扇形段辊缝的自动控制;同时还通过压力闭环和位置补偿的策略使扇形段的压下力尽量保持平衡,实现"软夹紧"功能,确保设备安全。实际应用效果表明,该辊缝控制技术可以适应多种规格的连铸坯,并能大幅提高产品质量。  相似文献   

10.
连铸扇形段辊缝波动是连铸坯质量提高的限制环节。通过数据分析发现:测量辊缝值和设定值存在较大偏差是辊缝波动的主要原因。对扇形段连接关键单元(连杆)进行有限元分析,得到连杆应力云图和变形云图,数据显示:在最大受力的条件下,连杆变形量最大可达到0.945mm。对连铸控制系统进行数据补偿后,可以实现设定辊缝值与实测辊缝值的良好吻合,为保证铸坯质量提供设备基础。  相似文献   

11.
从三绞点扇形段的结构特点出发,结合现场辊缝标定及测量数据,阐述影响扇形段标定精度的影响因素,后得出现场扇形段标定和辊缝测量的正确方法。  相似文献   

12.
某炼钢厂在近年来新建的板坯连铸机中采用悬浮式液压扇形段,在生产过程中辊缝精度难以准确控制,频繁发生漂移,严重影响铸机动态轻压下功能的实现,甚至造成液压扇形段的局部零件承载过荷而发生断裂失效。基于此,以该厂的实际数据为基础,对该类型液压扇形段的局部关键零部件及整体进行三维数值仿真分析,明确这类液压扇形段的辊缝变化特征与控制方法,为生产现场的实际辊缝控制及设备维护提供了合理的技术支撑。  相似文献   

13.
从三绞点扇形段的结构特点出发,结合现场辊缝标定及测量数据,阐述影响扇形段标定精度的影响因素,最后得出现场扇形段标定和辊缝测量的正确方法.  相似文献   

14.
肖勇 《天津冶金》2006,(2):40-42
济南钢铁集团总公司第三炼钢厂1#连铸机由奥钢联公司设计制造,其扇形段共14段,其中水平段(7-14段)采用智能扇形段(ASTC)。智能扇形段电气控制系统具有严密的控制逻辑及可靠的控制精度,通过对水平段辊缝的实时动态控制,可有效提高扇形段辊缝的控制精度,提高了铸坯质量。  相似文献   

15.
根据无间隙扇形段的载荷情况,对扇形段进行建模,运用有限元方法对扇形段的强度及刚度进行了分析和计算,分析了刚度的影响因素,为扇形段的设计与辊缝控制提供了重要依据。  相似文献   

16.
<正>专利号:ZL201010241895.X专利权人:河北钢铁股份有限公司邯郸分公司本发明涉及基于压力反馈检测铸坯凝固液芯末端的动态轻压下方法,属冶金连铸控制技术领域。首先在连铸机上建立各扇形段远程辊缝自动调节的控制平台,再利用安装在各扇形段上的压力传感器检测结果,计算铸坯在不同扇形段区域所受压力;通过变化各扇形段辊缝收缩大小,检测辊缝变化时各扇形段内铸坯受  相似文献   

17.
李成伟  宁丁丁 《宽厚板》2012,18(4):15-17
板坯连铸机扇形段辊子损坏主要有:辊子断裂、转动不良、对弧数据偏差较大和铸坯表面划痕等。通过加强辊子装配质量、提高对弧精度和辊缝精度,对扇形段辊子的使用进行优化,取得了良好的效果。  相似文献   

18.
概括介绍了中厚板铸机软压下扇形段辊缝控制系统的开发和应用,是对原有扇形段辊缝控制系统功能的完善和发展.系统的应用将结束宽厚板坯内部质量缺陷难以控制的落后状况,通过对铸机软压下扇形段辊缝控制系统生产数据的归档管理,系统还能够为生产和质量技术部门提供准确的产品工艺参教和质量信息.这对于建立和完善现代化的质量管理体系、提高薄板厂的信息化管理水平都具有十分重要的意义.  相似文献   

19.
介绍了鞍钢鲅鱼圈分公司连铸扇形段系统的总体结构。介绍了连铸二级系统动态辊缝控制、轻压下及软夹紧模型的应用。介绍了应用过程控制系统来实现连铸机辊缝的合理设定,从而实现提高板坯质量的目的。  相似文献   

20.
吕蔚 《宝钢技术》2008,(1):17-19
连铸机扇形段起着支撑和导向铸坯的作用,是在铸坯凝固过程中直接与之接触的设备,对铸坯表面质量和内部质量有很大的影响.扇形段控制的目的主要是使其根据工艺需求确保准确和稳定的辊缝.介绍了宝钢4#板坯连铸机扇形段控制系统的组成和特点,从控制周和位置传感器这两个决定辊缝控制系统稳定和精度的关键点入手,阐述了提高系统稳定性和精确性的措施;最后介绍了利用扇形段控制来优化连铸工艺流程的理论和实践.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号