共查询到20条相似文献,搜索用时 25 毫秒
1.
采用质量分数为5%~25%的改性磷石膏、15%的硅酸盐水泥熟料、60%~80%的矿渣混合磨细制成石膏矿渣水泥,研究了改性磷石膏掺量对石膏矿渣水泥浆体的抗压强度、水化热、孔溶液pH值及水化产物的影响情况.结果表明,掺入改性磷石膏使得石膏矿渣水泥的3 d、7 d抗压强度降低,其掺量为10%、15%时,水泥的28 d、90 d抗压强度超过普通硅酸盐水泥.在3 d至90 d龄期内,水泥孔溶液pH值随龄期增长而逐渐增大.在相同龄期时,随着改性磷石膏掺量的增大,水泥孔溶液pH值减小,水化放热峰出现时间延缓.微观分析表明,掺入改性磷石膏后,28 d龄期时的水泥水化产物主要为钙矾石和C-S-H凝胶,水化产物的生成量在改性磷石膏掺量为15%时最多. 相似文献
2.
矿渣作为一种工业固废因其优异的火山灰活性得到了广泛的应用,而磷渣作为黄磷工业的固废由于磷的缓凝作用,其利用率依旧较低.以矿渣与磷渣为主要胶凝材料,电石渣为碱激发材料,展开磷渣-矿渣-水泥三元体系胶凝材料的性能研究.结果表明:电石渣的激发效果随磷渣/矿渣质量比的增大而愈加显著;随磷渣/矿渣比例降低,激发体系的早期强度呈增大趋势,而后期强度呈减小趋势;磷渣与矿渣质量比为60:30时,电石渣激发后材料体系可兼顾早期与后期力学性能. 相似文献
3.
本文研究了磷渣在水及模拟水泥浆体孔溶液中的溶解特性.采用可见光分光光度法、SEM和XRD等分别研究了磷的溶解规律、溶解前后磷渣的结构与组成.结果表明:磷渣中磷在水中的最大溶出量为0.009%.而在模拟水泥浆体孔溶液中浸泡时,磷渣开始解体,参与化学反应使得原本光滑的表面变得粗糙,有斑驳状物质生成.随着磷渣比表面积的增加,磷渣中的磷的最大溶出量依次增加,且在达到最大溶出量0.102%后,又逐渐减小.不同Na/K摩尔比对磷渣中磷溶出量有一定的影响,当Na/K摩尔比为0.5时,磷渣中磷的溶出量最大为0.048%. 相似文献
4.
5.
采用磷渣以20%、40%和60%的比例取代水泥制备磷渣-水泥复合胶凝体系(PSC-X)以及用浓度分别为6 mol/L、8 mol/L、10 mol/L和12 mol/L的NaOH溶液制备碱激发磷渣胶凝体系(PSA-X).测试了两种体系的标准稠度用水(NaOH溶液)量、凝结时间、胶砂抗折强度和抗压强度,并结合XRD、TG-DSC和SEM-EDS等技术手段对其进行了物相组成及微观形貌的分析观测.研究结果发现:磷渣的掺入使PSC-X体系的标准稠度用水量降低了13.6%左右.而凝结时间却明显延长.增加NaOH溶液的浓度,PSA-X体系的标准稠度用液量也随之增加,且均高于PSC-X体系.凝结时间则较PSC-X体系明显缩短.适量掺入磷渣,能明显提高水泥胶砂试件的抗压强度;PSA-X体系的抗压强度发展良好,其强度值随激发剂浓度提高而呈下降趋势.PSC-X体系主要有Ca(OH)2、C-S-H凝胶、AFt和C4AHx等水化产物,而PSA-X体系则是Ⅰ型C-S-H凝胶,还有一定量的方沸石存在. 相似文献
6.
磷渣硅酸盐水泥的水化与硬化 总被引:7,自引:0,他引:7
使用差热、红外、衍射、电镜、压汞等仪器和方法,对磷渣硅酸盐水泥的水化动力学和水化产物进行试验研究,取得了一致的结果;由于组成粒化磷渣的硅灰石玻璃体具有较高的凝聚程度和最终强度,帮磷渣水泥早期水沦速度较底,后期强度增进率较高。渣玻璃体中磷酸盐的溶出对水泥早期水化和凝结时间也有明显的影响。磷渣水泥的水化过程及水化产物基本相同于矿渣水泥。可以采用发迹磷渣成分,提高熟料质量、细磨、外加激发剂等工艺措施来提 相似文献
7.
为了研究超细磷渣粉对水泥性能的影响,测试了普通磷渣,4 μm、2μm超细磷渣-水泥复合胶凝材料的标准稠度用水量、凝结时间、水化热、胶砂抗压强度.结果 表明:与纯水泥相比,超细磷渣掺入使复合胶凝材料标准稠度用水量增大5.6%~12.6%,凝结时间延长;普通磷渣-水泥复合胶凝材料相比于纯水泥水化速率缓慢,第二水化放热峰时间延迟8.26h;超细磷渣-水泥复合胶凝材料相比于普通磷渣-水泥复合胶凝材料水化放热速率增大,第二水化放热峰提前5.5h,超细磷渣-水泥复合胶凝材料120 h水化放热总量接近纯水泥;超细磷渣-水泥复合胶凝材料3d、7d抗压强度与水泥胶砂强度持平,28 d抗压强度超过水泥胶砂强度.超细化处置可增强磷渣的活性,促进磷渣本身的火山灰反应,提高水泥基材料性能,对实现磷渣的资源化利用具有重要意义. 相似文献
8.
9.
通过实验研究了溶液pH值对镀镍液的阴极电流效率、分散能力、镀镍层的外观、孔隙率的影响。结果表明,当pH值在4.0—5.0范围内变化时,镀层外观较好,当pH值为5.0时,镀液的阴极电流效率最高为98.8%,分散能力最好,达35.8%,孔隙率最低为3个/cm^2。 相似文献
10.
结合XRD、SEM等微观测试手段,从磷渣粉磨特性出发,实验研究了磷渣细度、磷渣掺量等因素对中热硅酸盐水泥凝结硬化性能及水化产物的影响,测定了磷渣水泥胶砂的力学性能,并分析了其变化规律。 相似文献
11.
结合XRD、SEM等微观测试手段,从磷渣粉磨特性出发,研究了磷渣细度、磷渣掺量等因素对中热硅酸盐水泥凝结硬化性能及水化产物的影响,测定了磷渣水泥胶砂的力学性能,并分析了其变化规律。 相似文献
12.
13.
磷渣对水泥浆体水化性能和孔结构的影响 总被引:4,自引:0,他引:4
通过对水泥浆体凝结性能、水化放热、力学性能和孔结构的测定,以及扫描电镜分析和差热-热重分析,研究了不同掺量磷渣对水泥浆体水化性能和微观结构的影响.结果表明:随着磷渣掺量的增加,浆体的凝结时间延长,水化热减少,早期抗压强度下降.但掺磷渣水泥浆体的后期抗压强度已接近或超过了纯水泥浆体的,磷渣掺量的增加对水泥浆体的后期抗压强度影响不显著.浆体中的Ca(OH)2量随龄期的延长而增加并随磷渣掺量的增加而降低.磷渣的活性效应和填充效应的发挥有效地改善了浆体水化后期的微观结构和孔结构,从而使浆体的力学性能有所提高. 相似文献
14.
矿渣掺量对高水胶比水泥净浆水化产物及孔结构的影响 总被引:13,自引:2,他引:13
测定了水胶比为0.5、矿渣质量分数为30%~80%的硬化水泥浆体中Ca(OH)2和非蒸发水量、孔径分布及孔隙率,以确定矿渣在高水胶比条件下的合理掺量。结果表明:即使在矿渣为大掺量情况下也能够改善浆体孔结构,而非蒸发水量、孔隙率随矿渣掺量的变化而变化,并存在使水化产物含量最多、浆体孔隙率最低的矿渣最佳掺量。在矿渣为大掺量情况下,Ca(OH)2含量可降低到极低。在比较纯水泥浆体和掺矿渣浆体的非蒸发水量和孔隙率的基础上提出了矿渣最大有益掺量,矿渣的掺量低于此值时,可使材料的性能得到改善。 相似文献
15.
本文研究了两种碱-磷渣水泥(用NaOH作为碱性激发剂的MO及用Na_2O·SiO_2作为碱性激发剂的M_1)在不同温度下的水化放热速率及强度发展情况。实验结果表明,M1水泥对温度的敏感性高于M0水泥,原因是这两种水泥的表现水化活化能不一样,M0水泥的为38.89KJ/mol,而M1水泥的为64.62KJ/mol。 相似文献
16.
17.
18.
晶化过程中无机盐及pH值调节对介孔分子筛水热稳定性的影响 总被引:1,自引:0,他引:1
以十六烷基三甲基溴化铵为模板剂,正硅酸乙酯为硅源,在碱性条件下合成了介孔分子筛MCM-41.借助XRD,SEM等检测手段考察了晶化过程中加入无机盐对介孔材料稳定性的影响.实验结果表明:加入NaF的样品其XRD衍射峰较强,表现出较好的结构有序性;在最初凝胶晶化24h后引入(NH4)2SO4,同样可获得有序的介孔结构;晶化过程中降低体系pH值能使硅酸盐的聚合度增大,孔壁厚度增加.由于所得产物具有完整的介孔结构,很好的结晶度及较大的孔壁厚度,因而在一定程度上提高了介孔分子筛的水热稳定性. 相似文献
19.
一直使用矿渣作为水泥混合材料,矿渣氯离子含量较高,容易导致水泥氯离子超标,再加之易磨性差,决定寻找新的混合材料.经寻找发现锂渣的氯离子含量低,活性好,后期强度增长大,是较理想的混合材料.由实践数据可以发现,将一部分矿渣用锂渣替代后生产P·O42.5R水泥,生产指标和质量指标均有比较明显的改善. 相似文献
20.
大掺量超细矿渣粉水泥基胶凝材料的性能与结构及磷石膏的影响 总被引:4,自引:0,他引:4
研究了用50%~80%(质量分数,下同)超细矿渣粉和20%~50%的P·Ⅱ42.5水泥配合的胶凝材料的性能及添加磷石膏对其性能的影响.结果表明:用50%~80%超细矿渣粉等量取代水泥,对水泥的凝结时间影响不大,但会较大幅度降低其3 d和7 d的抗压强度和抗折强度:而超细矿渣粉的取代量为50%~60%时,胶凝材料的28d强度与硅酸盐水泥持平甚至超过后者,并可减小胶凝材料的早期收缩:掺加超细矿渣粉量的2%~3%的磷石膏可以较大幅度提高大掺量超细矿渣粉胶凝材料的早期强度,而对其后期强度和干缩性能无不利影响,对大掺量超细矿渣粉胶凝材料硬化后期浆体水化产物和结构也无显著影响. 相似文献