首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
活性与惰性掺合料对复合胶凝材料水化性能的影响   总被引:1,自引:0,他引:1  
何林  刘数华 《粉煤灰》2015,27(1):42-44
采用ESEM、MIP、XRD及SEM等测试技术研究活性(粉煤灰)和惰性(石灰石粉)掺合料对复合胶凝材料强度、孔结构及水化产物等的影响,以此揭示水泥-粉煤灰-石灰石粉胶凝材料体系的水化特性。结果表明:石灰石粉和粉煤灰复掺具有比粉煤灰更好的减水效应,复合胶凝材料的强度也比单掺粉煤灰高;石灰石粉和粉煤灰复掺时,能够很好地填充熟料颗粒间的孔隙,显著改善孔结构,降低孔隙率,使孔隙结构得到细化;石灰石粉在复合胶凝材料中后期水化明显,生成水化碳铝酸钙;SEM照片也证实了石灰石粉水化活性以及对孔结构的改善作用。石灰石粉和粉煤灰复掺能优化复合胶凝材料体系,提高材料的水化性能。  相似文献   

2.
石灰石粉在复合胶凝材料中的水化性能   总被引:5,自引:1,他引:4  
刘数华  阎培渝 《硅酸盐学报》2008,36(10):1401-1405
用扫描电镜、X射线衍射和能谱技术研究石灰石粉在复合胶凝材料中的水化性能和水化产物.结果表明:石灰石粉的掺入会降低复合胶凝材料的强度,但对后期(180 d)强度的影响会逐步减小;石灰石粉与普通硅酸盐水泥在早期(28 d)水化程度较低,后期会与铝酸盐发生水化生成水化碳铝酸钙;在铝酸钙水泥的激发下,石灰石粉早期就能参与水化生成水化碳铝酸钙.  相似文献   

3.
石灰石粉在复合胶凝材料中的水化活性   总被引:2,自引:0,他引:2  
试验设计了一系列胶砂配合比,测试不同龄期的抗压强度,采用蒲心诚教授提出的水化活性评价方法,对石灰石粉在复合胶凝材料中的水化活性进行分析。试验结果表明,随着石灰石粉掺量的增加,复合胶凝材料的需水量减小,抗压强度降低;但掺量在30%以内时,石灰石粉掺量对复合胶凝材料抗压强度的影响较小,具有一定的水化活性。  相似文献   

4.
石灰石粉在复合胶凝材料水化中的作用机理   总被引:2,自引:0,他引:2  
将石灰石粉用作水工混凝土矿物掺合料,不仅能改善混凝土的性能,而且能降低工程造价,是绿色混凝土的重要发展方向之一。文章介绍了当前国内外在石灰石粉应用方面的研究概况及存在的不足;通过微观研究,得出石灰石粉在复合胶凝材料水化中的三大作用机理:填充效应、活性效应和加速效应;最后,提出石灰石粉应用研究中丞待解决的问题,指出还需继续开展的研究工作重点。  相似文献   

5.
发展低熟料高标号胶凝材料是水泥工业碳达峰目标达成的有效途径之一,但对水泥混合材特性利用及多种混合材协同作用也提出了更高要求。本文以四川地区工业固废硅锰渣和地域资源丰富的石灰石为主要混合材,配制了熟料-硅锰渣-石灰石复合胶凝材料,研究了复合胶凝材料性能及水化特性。研究结果表明,熟料-硅锰渣-石灰石复合胶凝材料工作性良好,后期力学性能增强,且石灰石粉的成核诱导水化效应可有效改善单独使用硅锰渣胶凝材料体系凝结时间延长和早期强度过低问题。复合胶凝材料体系中,石灰石粉的早期成核诱导水化效应和硅锰渣后期水化活性均能得到充分发挥。此外,硅锰渣和石灰石粉能够协同参与胶凝材料体系水化,消耗铝相生成水化碳铝酸盐相,增加水化产物总量,同时也能阻止AFt向AFm转变,有利于体系力学性能稳定提升。  相似文献   

6.
水泥中掺入大量矿物掺合料易造成其早期强度低、施工周期长等问题。本文研究了C-S-H晶核对含矿物掺合料的复合胶凝材料体系水化性能的影响规律;通过热力学计算阐述了C-S-H晶核降低水化产物成核势垒的机理,并通过离子溶出与沉积探讨大掺量矿物掺合料胶凝体系水化机理。结果表明:矿物掺合料复合胶凝材料体系水化能力较弱,这是由于Ca2+溶出受到制约,C3S的水化反应缓慢;当加入晶核后,水泥中硅酸盐相溶解-结晶能力得到大幅提升,使得矿物掺合料水泥体系的水化反应活性接近纯水泥体系。研究表明,C-S-H晶核可解决大掺量矿物掺合料胶凝体系所带来的水化能力严重不足问题。  相似文献   

7.
为探讨矿物掺合料对预制装配式混凝土水化产物与力学性能的影响,采用20%的镍铁渣粉、锂渣粉、钢渣粉与矿渣粉分别取代水泥,在早期80℃蒸养7h条件下制备了水泥净浆与砂浆,对比研究了镍铁渣粉、锂渣粉、钢渣粉与矿渣粉对7h和28 d龄期蒸养水泥水化产物和力学性能的影响.结果 表明:除了C-S-H与Ca(OH)2外,7h蒸养水泥的水化产物主要为AFm与Ca4Al2O6(CO3)0.5(OH)·11.5H2O,28 d蒸养水泥的水化产物主要为Ca4Al2O6(CO3)0.5(OH)·11.5H2O和Ca4Al2O6(CO3)·11H2O,矿物掺合料对蒸养水泥水化产物种类影响较小;掺镍铁渣粉、锂渣粉、钢渣粉、矿渣粉后,7h蒸养水泥的化学结合水含量分别达到了纯水泥的93.27%、102.22%、90.24%、102.22%,28 d蒸养水泥的化学结合水含量分别达到了纯水泥的93.76%、95.08%、86.27%、95.68%,掺锂渣粉与矿渣粉可以显著提高7h蒸养水泥的水化程度,掺钢渣粉的效果最差;此外,掺锂渣粉、钢渣粉、矿渣粉改变了蒸养7h水泥浆体C-S-H的形貌,除了纤维状C-S-H外,掺锂渣粉水泥浆体中还有蜂窝状C-S-H形成,掺钢渣粉水泥浆体与掺矿渣粉水泥浆体中还有球形与薄片状C-S-H形成;掺锂渣粉可以提高早期80℃蒸养7h水泥胶砂的抗压与抗折强度,但四种矿物掺合料均不能改善28 d蒸养水泥胶砂的力学性能.  相似文献   

8.
通过凝结时间试验、量热分析、TG-DSC分析和XRD分析研究了石灰石粉对水泥水化特性的影响.试验结果表明:石灰石粉能够促进水泥的凝结硬化,改变水泥水化历程,使诱导期缩短,加速期提前;石灰石粉导致新相水化碳铝酸钙的形成,对水泥水化产物产生影响.  相似文献   

9.
通过对不同高炉镍铁渣掺量的水泥-高炉镍铁渣粉复合胶凝材料水化放热速率、高炉镍铁渣粉的反应程度、硬化浆体化学结合水含量以及水化产物中C-S-H凝胶Ca/Si的测定,分别研究了水泥-高炉镍铁渣粉复合胶凝材料的早期、中长期水化进程、浆体微观形貌以及水化产物特点等水化特性.研究结果表明:高炉镍铁渣的掺入会降低水化放热速率,并推迟水化加速期放热峰的出现时间;在复合胶凝体系中,随着高炉镍铁渣粉掺量的增大,其反应程度和硬化浆体中化学结合水含量将降低.复合胶凝材料水化生成的C-S-H凝胶的Ca/Si低于水泥,且随着水化的进行呈降低趋势;高炉镍铁渣粉中的Al,在水化过程中会取代部分Si进入C-S-H凝胶中,形成C-A-S-H凝胶.  相似文献   

10.
矿渣具有潜在活性,可用于制备不同类型的水泥.介绍了矿渣的形成与材料特性,在此基础上,将其用于矿渣硅酸盐水泥、超硫酸盐水泥及碱激发矿渣水泥,并分析其在不同胶凝体系中的水化特性.在三种胶凝体系中,矿渣在碱和硫酸盐激发下,形成大量水化硅酸钙和钙矾石等水化产物;随着水化反应的不断发展,使得硬化浆体更加致密,进而提高水泥的强度.  相似文献   

11.
利用X射线衍射、扫描电镜及力学性能测试等手段研究了纳米SiO2对玻璃粉水泥体系水化硬化的影响,结果表明:纳米SiO2促进了水泥早期溶解,提高了复合体系碱度,有利于玻璃粉内部高能键(Si-O,Al-O)断裂,从而提高复合体系中玻璃粉早期水化程度;纳米SiO2对材料凝结硬化的促进作用较大程度上缓解了掺玻璃粉体系早期性能发展不足的缺陷;纳米SiO2的微集料效应,改善了玻璃粉水泥浆的微观结构,使得硬化浆体更为密实;纳米SiO2的促凝作用可显著缩短复合体系凝结时间,大幅度提高其早期强度,但掺纳米SiO2的复合胶凝材料强度存在一个极值,而5%纳米SiO2为其最佳掺入量.  相似文献   

12.
卿三成  马丽萍  杨静  敖冉  殷霞  穆刘森 《硅酸盐通报》2021,40(12):4052-4060
以磷石膏(PG)、热焖钢渣(HBSS)、硅酸盐水泥和铝酸盐水泥(AC)为主原料,水玻璃为碱激发剂制备复合胶凝材料。在养护龄期0~28 d内,测试了该材料的抗压强度与膨胀率,并通过X射线衍射(XRD)、扫描电子显微镜(SEM)和比表面积及孔隙率(BET)测试,分析了磷石膏、热焖钢渣和铝酸盐水泥间的水化协同机理。结果表明,过0.300 mm筛孔的钢渣微粉同时具备良好的骨架填充作用和水化胶凝性能。水化过程中水玻璃可提高钢渣表面玻璃体网络结构的溶解速率,促使钢渣与铝酸盐水泥生成C-A-S-H。同时,铝酸盐水泥与磷石膏反应生成的钙矾石可抑制C-A-H水化过程中的相变收缩。此外,若铝酸盐水泥比例过高,大量钙矾石和C-A-H会迅速生成并覆盖于钢渣表面,阻碍Na2SiO3促进钢渣玻璃网络结构的溶解。本文可为磷石膏和钢渣协同资源化利用提供理论依据。  相似文献   

13.
矿渣、钢渣是常见炉渣,炉渣作为工业冶炼后的残余产物占据着大量优质的土地资源,严重污染着周边环境.为了解决炉渣的使用问题,一种方法是将经过处理的炉渣掺入到水泥的生产中,代替部分水泥,制成炉渣水泥复合胶凝材料;另一种方法是将炉渣作为碎石掺入到混凝土的制作过程中,但这种效果并不理想.研究表明,炉渣水泥复合胶凝材料几乎与水泥性能相当,展现出了许多优异的性能.这种方法不仅解决了炉渣使用的问题,还减少了因为炉渣堆积和水泥生产带来的环境污染,因此炉渣水泥复合胶凝材料的研究成为了国内外关于水泥研究的热点之一.将从多方面介绍炉渣水泥复合胶凝材料在国内外研究的现状以及未来的发展展望.  相似文献   

14.
氯氧镁水泥具有放热量大、放热集中的特点.为了改善由放热量大引起的制品开裂、变形等缺点,本文采用水化热法,研究了内掺粉煤灰、硅灰和矿渣3种矿物掺合料对氯氧镁水泥水化历程的影响规律.研究结果表明,三者均能影响氯氧镁水泥的水化历程,延长水化时间,降低放热速率和总放热量,但三者影响效果不尽一致.当掺量为10%时,粉煤灰、硅灰和矿渣分别使镁水泥的诱导期延长了2%、6%和13%,第二最大放热速率分别降低了6%、16%和7%,3d水化放热量分别降低了9%、14%和6%;当掺量为30%时,粉煤灰和矿渣分别使镁水泥的诱导期延长了24%和45%,第二最大放热速率分别降低了29%和32%,3d水化放热量分别降低了27%和29%;三者对氯氧镁水泥水化历程的影响差异,与其矿物组成、比表面积、颗粒级配和形状等性质有关.实验结果为进一步寻找控制和改善氯氧镁水泥性能的合适外加剂提供了可靠的依据.  相似文献   

15.
权娟娟  王宁  郭磊  张凯峰  马斌 《硅酸盐通报》2016,35(7):2171-2176
通过测定矿渣胶凝材料体系不同龄期的化学结合水含量,结合SEM分析,研究了碱矿渣胶凝材料的水化特性以及水化产物的微观形貌.结果表明:随着水化时间的增加,水化程度呈现不断增长的趋势,水化时间为1d时,水化程度为40.37%;水化初期,小颗粒形状的凝胶体在矿渣周围形成,凝胶间不断组合生长为C-S-H凝胶,随着水化时间的增加,胶凝体系逐渐致密.水化产物的Ca/Si、Ca/(Si+ Al)、Na/(Si+ Al)的质量比比值趋于稳定,表明碱矿渣-钢渣复合胶凝体系已形成稳定的水化产物.  相似文献   

16.
何志鹏  夏举佩  郑森 《硅酸盐通报》2016,35(6):1946-1951
研究了外加剂对磷石膏基复合胶凝材料性能的影响.通过单因素实验考察了外加剂CaCl2 (CC)、Na2SO4(NS)、NaF(NF)和水玻璃(NSO)的不同掺量对复合胶凝材料性能的影响,通过正交试验得到了外加剂复配的最佳方案,即有CC为0.6%,NS为0.2%,NSO为0.6%,NF为0.3%.正交优化组的3d和28 d的抗压强度为35.96MPa、42.88 MPa,其强度分别提高了19.27%和20.89%.采用XRD和SEM等方法分析了复合胶凝材料的水化产物组成和微观形貌.分析结果表明外加剂不仅能加快磷石膏基复合胶凝材料的水化反应进程,还可以生成更多更致密的水化产物,使其结构更加紧密,提高了复合胶凝材料的力学性能.  相似文献   

17.
本文以钢渣基掺合料(steel slag based admixtures, GKF)为研究对象,在单因素试验的基础上,通过正交试验探索了激发剂Na2SO4、硅渣和脱硫石膏三类激发剂复配最佳方案,最优质量配比为Na2SO4 2.0%,硅渣0.5%,脱硫石膏1.5%。研究表明,在最佳复合激发剂掺量及配合比下,用50%的GKF替代P·Ⅰ 42.5制备的胶砂试件在3 d、7 d和28 d活性分别为77.3%、85.9%和96.6%,与未加激发剂组相比,活性分别提高量了24.2%、25.4%和22.4%。借助XRD、SEM对其水化物矿物结构及微观形貌分析,结果表明,复合激发剂有助于GKF的水化,提高试件C-S-H和AFt的含量,使其结构更加紧密。  相似文献   

18.
权娟娟  王宁  王晴  王晓峰  张凯峰 《硅酸盐通报》2016,35(10):3264-3269
研究了不同水化温度对矿渣-水泥复合胶凝体系水化反应特性的影响.研究表明:随着水化温度的降低,复合胶凝体系的水化放热速率、非蒸发水含量、强度均呈现出降低的趋势,负温条件下复合胶凝体系的水化反应特性与常温一致;通过计算获取各个阶段的反应速率曲线,可较好地对由量热实验数据绘制的复合胶凝体系实际水化速率dα/dt曲线进行分段的模拟;将不同温度下复合胶凝体系水化放热量的数据转换为水化反应程度α,对既有模型进行验证.结果表明,现有模型可较准确的预测低温下复合胶凝体系的水化反应程度.  相似文献   

19.
本试验研究了超细高活性矿物掺合料(超细掺合料)与硅灰以单掺、复掺的方式制备超高性能混凝土(UHPC),分析了复掺不同掺量超细掺合料对UHPC的工作性、力学性能、水化热和收缩性能的影响。结果表明:UHPC流动性随超细掺合料掺量的增加而增加,跳桌流动度最高为275 mm;将超细掺合料与质量分数为10%的硅灰以复掺的方式制备UHPC时,随超细掺合料掺量的增加,UHPC抗折强度先增加后降低,抗压强度先增加后趋于平稳,最大抗折强度和抗压强度分别为25.9 MPa和150.0 MPa;超细掺合料与质量分数为10%的硅灰复掺制备的UHPC水化热随超细掺合料掺量增加,先增大后减小;复掺质量分数为10%的超细掺合料与质量分数为10%的硅灰制备的UHPC早期收缩量最小,比单掺质量分数为20%的硅灰制备的UHPC低50.92%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号