首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高磷铁矿由于磷含量过高,限制其大规模开发利用。通过XRD衍射仪分析高磷铁矿中磷的赋存状态,并基于FactSage7.2热力学计算结果的基础,采用配料造球、球团焙烧等手段,探究不同脱磷剂SiO_2和CaCl_2对高磷铁矿球团气化脱磷的影响。结果表明:高磷铁矿中磷的存在形式为Ca_5(PO_4)_3,加入脱磷剂后气化脱磷开始反应温度降低至815℃,在温度1 250℃,配碳5%的条件下,加入SiO_2和CaCl_2配比分别为0.8%、1.6%作为混合脱磷剂,气化脱磷效果最佳,脱磷率达22.1%。为高磷铁矿在球团焙烧过程中气化脱磷提供了新思路。  相似文献   

2.
为实现高磷铁矿粉在焙烧过程中气化脱磷,促进高磷铁矿的开发利用。试验基于微波加热的方式和加入复合脱磷剂条件下,研究了微波焙烧工艺参数(温度、煤粉粒度、升温速率、保温时间)对气化脱磷率的影响。结果表明,随着温度的提高、升温速率加快及煤粉粒度的加粗,气化脱磷率明显提高,而保温时间对脱磷率的影响呈现先增加后降低的趋势,通过优化焙烧工艺参数后,高磷铁矿粉的气化脱磷率达到最大值为25.71%。  相似文献   

3.
高磷铁矿气化脱磷理论及试验研究   总被引:1,自引:0,他引:1  
以高磷铁矿为研究对象,从氧势图、热力学计算、气化脱磷优势区图角度分析了气化脱磷的可行性,采用微型烧结试验研究了不同配碳量、添加剂配比对气化脱磷率的影响。理论分析表明,磷氧化物氧势线高于铁氧化物氧势线,难于还原,原料中加入碳后,碳颗粒周围存在局部的还原性,可以实现原料中磷的还原,加入添加剂,可以把原料中磷转化为含磷气体。试验研究表明,配碳量过低和过高均不利于脱磷,当配碳量为4%,按照一定配比加入Si O2+Ca Cl2后,气化脱磷率达到17%左右。  相似文献   

4.
白云鄂博铁精矿磷含量较高为0.08%(质量分数),且磷元素主要以氟磷灰石的形式存在。基于前期白云鄂博矿磷的赋存状态及白云鄂博矿预还原烧结工艺对脱磷影响的研究,同时为了开发利用其他中、高磷铁矿,研究了白云鄂博铁精矿预还原烧结过程中磷的气化脱除机制。利用FactSage热力学软件、XRD、SEM-EDS对比分析不同SiO2、Na2CO3添加量对预还原烧结过程中气化脱磷率、金属化率以及物相转变的影响。结果表明:最佳的SiO2、Na2CO3添加量(质量分数)分别为3%、1%,对应的脱磷率为31%,金属化率为96%,实现了预还原烧结过程中磷的有效脱除,进一步明确预还原烧结脱磷机制,为以后中、高磷铁矿脱磷的研究指明了方向。  相似文献   

5.
白云鄂博铁精矿磷含量较高为0.08%(质量分数),且磷元素主要以氟磷灰石的形式存在。基于前期白云鄂博矿磷的赋存状态及白云鄂博矿预还原烧结工艺对脱磷影响的研究,同时为了开发利用其他中、高磷铁矿,研究了白云鄂博铁精矿预还原烧结过程中磷的气化脱除机制。利用FactSage热力学软件、XRD、SEM-EDS对比分析不同SiO_2、Na_2CO_3添加量对预还原烧结过程中气化脱磷率、金属化率以及物相转变的影响。结果表明:最佳的SiO_2、Na_2CO_3添加量(质量分数)分别为3%、1%,对应的脱磷率为31%,金属化率为96%,实现了预还原烧结过程中磷的有效脱除,进一步明确预还原烧结脱磷机制,为以后中、高磷铁矿脱磷的研究指明了方向。  相似文献   

6.
微波作用高磷铁矿提铁脱磷的研究   总被引:1,自引:0,他引:1  
为充分利用高磷铁矿,进行了微波作用高磷鲕状赤铁矿煤基碳热还原提铁脱磷的研究.高磷铁矿经微波作用碳热还原、细磨和磁选,其脱磷率达到87.8%,收铁率达到90%.本文从晶格能、热力学和动力学方面分析了微波强化高磷铁矿提铁脱磷的作用机理,探讨了微波应用于高磷铁矿提铁脱磷的可能性.结果表明:微波可以加快铁矿石碳热还原反应速率,...  相似文献   

7.
采用小球烧结方法研究不同因素对高磷赤铁矿烧结气化脱磷的影响。结果表明:气化脱磷反应主要是气固相反应的过程。在弱氧化气氛条件下,高磷赤铁矿的气化脱磷率随反应温度升高、碱度降低、恒温时间延长而增加。在脱磷剂加入量6.8%的条件下,比较适宜的气化脱磷工艺参数为配碳4%、反应温度1 250℃、碱度1.2、恒温时间30 min,此时气化脱磷率达到了23.8%。并对最终焙烧产物进行了XRD微观检测分析,证实了气化脱磷反应的发生。  相似文献   

8.
进行了微波作用高磷鲕状赤铁矿煤基碳热还原提铁脱磷的实验研究。从热力学和动力学方面研究了微波强化高磷铁矿提铁脱磷的作用机理,探讨了微波场中高磷铁矿提铁脱磷的影响因素和工艺条件。结果表明:微波可以加快铁矿石碳热还原反应速率,强化提铁脱磷效果;高磷铁矿在微波场中碳热还原,再经细磨和磁选,其脱磷率可达87.8%,收铁率可达90%。  相似文献   

9.
利用溅渣护炉动力学条件,向终渣中加入焦粉可使终渣中P元素以气态形式脱除,处理后熔渣可循环利用。为进一步提升气化脱磷率进行了优化工业试验,试验表明:焦粉最佳加入量为1.1倍碳当量,其气化脱磷率为42.3%;将溅渣护炉时的底吹流量控制在350 m~3/h气化脱磷率最大,为37.9%;焦粉粒度6~8 mm时气化脱磷率为34%,焦粉粒度细化至4~6 mm时气化脱磷率变化不大;若溅渣前加入1/2焦粉,溅渣开始10 s内加入其余部分,气化脱磷率可提高至37%。  相似文献   

10.
通过热力学分析,结合HSC热力学软件计算结果,发现C6H12O6、CaCl2和SiO2在一定程度上能够促进高磷钢渣中磷酸钙分解,实现气化脱磷。借助微型烧结实验手段,试探性研究了不同脱磷剂对气化脱磷率的影响。结果表明,用C6H12O6、CaCl2、SiO2配比分别为0.18%、0.29%和0.69%的混合物作脱磷剂,烧结过程中气化脱磷率能达到40.5%。结合生产成本考虑,是比较适宜的。  相似文献   

11.
为实现转炉溅渣护炉阶段的气化脱磷工艺,避免炉渣磷富集,便于脱磷熔渣留至后续炉次循环利用,在实验室进行了焦粉还原转炉渣的热态试验,研究结果表明,随着试验温度的升高,焦粉的气化脱磷率逐渐升高,1900 K下的气化脱磷率可达82.35%;焦粉的气化脱磷率随着炉渣碱度的升高呈现降低趋势;当焦粉加入量足够时,适当增加炉渣中FeO质量分数有利于气化脱磷反应的进行;当焦粉粒度为0.5~2.5 mm时,气化脱磷率变化不大,约为58%,但当焦粉粒度为2.5~3.5 mm时,气化脱磷率降至52%。富磷相微区碳质量分数与磷质量分数成反比,这印证了焦炭确实参与了气化脱磷反应。研究结果为工艺开发提供了一定的理论指导。  相似文献   

12.
针对顶底复吹转炉炼钢生产,结合气化脱磷热力学理论分析,研究了供氮强度、焦粉加入增加比例和底吹气体流量分别对气化脱磷的影响。结果表明,在炼钢温度下用碳质脱磷剂还原炉渣中P_2O_5是可行的,选择以焦粉作为还原剂更加合理;为了保证气化脱磷率在36%以上,应将供氮强度、焦粉加入增加比例和底吹气体流量分别控制在3.5~4.5 m~3/(t·min)、8%~12%和280~400 m~3/h为好。  相似文献   

13.
研究了髙磷赤铁矿气化脱磷过程中活化能的变化。采用综合热分析仪,在样品重量为80 mg、温度范围100~1 350℃、升温速率分别为10、15、20℃/min的条件下,对髙磷赤铁矿和Fe2O3在不同阶段的反应活化能进行对比试验。结果表明:气化脱磷反应在第二失重阶段发生;采用Ozawa法计算得出高磷铁矿反应的第一、二失重阶段和Fe2O3反应的第二失重阶段平均活化能分别为104.71 k J/mol、250.55 k J/mol和168.80 k J/mol,气化脱磷反应为吸热反应,脱磷反应过程中克服能垒需要更高能量。  相似文献   

14.
 为了解决脱磷转炉熔渣中磷含量过高而不能直接实现转炉内循环利用的问题,在实验室进行了焦炭还原脱磷转炉熔渣热态试验,系统研究了不同碳当量、温度、碱度、FeO质量分数、氮气流量对气化脱磷率的影响规律。研究结果表明,试验采用2倍碳当量气化脱磷效果较好,气化脱磷率随着温度的升高而逐渐增加,1 733 K时气化脱磷率为68.6%;气化脱磷率随着碱度的降低而逐渐增加,当碱度控制为1.4时气化脱磷率可以达到45.6%;FeO质量分数在10%~30%范围变化时,气化脱磷率随着FeO质量分数的增加先升高后降低,FeO质量分数为25%时气化脱磷率最高可以达到43.5%。气化脱磷率随着氮气流量的增加先升高后降低,氮气流量为80 L/h时,气化脱磷率为45.37%。由SEM分析结果可知,脱磷炉渣中的磷主要富集在硅钙富集区域,气化脱磷反应后微区内磷分布无特殊规律。  相似文献   

15.
预熔脱磷剂进行铁水脱磷的实验研究   总被引:3,自引:0,他引:3  
在实验室条件下,以CaO-Fe2O3-CaF2为预熔脱磷剂的主要渣系,对预熔脱磷剂的配比关系、加入量、处理温度、初始铁水磷含量以及预熔渣粒度进行了研究.结果发现:在1 350℃条件下,w(CaO)/w(Fe2O3)约取1.0,在加入量为10%的预熔脱磷剂能将铁水中的磷降低到0.0079%,脱磷率为96.24%,且初始铁水磷含量以及预熔渣粒度对脱磷率影响不大.  相似文献   

16.
在固定碱度和MgO含量等条件下,进行了配加高磷铁矿的烧结杯实验,研究了烧结过程、烧结矿性能及适宜配碳量,为工业应用高磷铁矿提供参考;通过烧结前后磷的存在形式变化,分析了磷的转化机理,探讨了烧结脱磷的可行性。  相似文献   

17.
在1 100~1 350℃,1 000Pa,3倍碳当量条件下,采用微波加热方法对碳还原转炉钢渣的气化脱磷反应进行了宏观动力学分析。结果表明,微波加热条件下,气化脱磷率为31.0%~35.7%,该气化脱磷反应为二级反应,活化能为55.52kJ/mol,并得到了气化脱磷反应速率常数与温度的关系式,同时界面化学反应为可能的限制性环节。通过提高反应温度、减小钢渣及焦炭粒度、增大反应物料接触面积,可提高气化脱磷反应的速率。研究结果为探明微波碳热还原脱磷反应的机理及速率问题,实现转炉钢渣在钢铁企业内部的循环利用提供了理论依据。  相似文献   

18.
张伟  刘卫星  李杰  李运刚  邢宏伟 《钢铁》2015,50(1):11-14
 在脱磷剂种类和配比一定的条件下,借助微型烧结实验手段,研究了碱度、温度、配碳量和磷含量等因素对高磷钢渣气化脱磷率的影响规律。研究发现,碱度升高,钢渣气化脱磷率降低,温度升高,钢渣气化脱磷率升高;随着配碳量增加,钢渣气化脱磷率先升高后降低,磷含量增加,钢渣气化脱磷率升高,当磷含量达到一定水平后,磷含量对气化脱磷率的影响减弱,并最终确定了各因素的最佳状态。  相似文献   

19.
为保证转炉熔渣气化脱磷后循环利用的冶炼效果,在实验室进行了气化脱磷炉渣作为返料用于造渣脱磷的热态试验。研究结果表明:气化脱磷渣具备高氧化钙、高碱度、低P_2O_5、高FeO的特点,不需经历成渣过程,可直接用于二次脱磷;采用气化脱磷渣进行铁水脱磷试验时,随着试验温度的提高,铁水终点磷含量呈增大趋势,1 500℃下终点铁水w(P)仅为0.067%,对应的脱磷率为40%;对比气化脱磷渣和配制脱磷剂炉次的脱磷速度可知,在反应前期,气化脱磷渣成渣速度快,气化脱磷渣炉次的铁水磷含量低于配制脱磷剂炉次;但受限于磷容量,气化脱磷渣的终点脱磷效果不如所配脱磷剂,因此建议在工业试验中可将气化脱磷渣与新造渣剂搭配使用,在保证脱磷效果同时,减少造渣料消耗。  相似文献   

20.
为了解决转炉渣由于磷含量过高而不能返回到转炉内循环利用的问题,采用FactSage7.2并结合SEM+EDS对气化脱磷理论和影响因素、留渣操作和枪位控制对脱磷的影响以及气化脱磷渣形貌进行了分析。结果表明,在温度高于941 K时用C还原出炉渣中P_2O_5的P是可行的,同时降低反应分压有利于气化脱磷反应的进行;采用焦粉作为还原剂时,碳当量和底吹流量分别控制为2倍碳当量和300 m~3/h时气化脱磷效果最好;当底吹流量为300 m~3/h、2倍碳当量和w(FeO)≥18%时气化脱磷率最高,为42%。采用留渣操作溅渣护炉气化脱磷模式时终点钢液磷含量较低,前期采用稍高的吹炼枪位,后期逐渐降低枪位,气化脱磷渣形貌结构表明P元素主要富集在Ca、Si所在的深灰色区域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号