共查询到16条相似文献,搜索用时 70 毫秒
1.
研究了粉煤灰(FA)及其掺量对硫铝酸盐水泥(CSA)浆体的凝结时间、抗压强度和化学收缩的影响规律,并通过XRD、SEM等方法对72 h龄期时的水化产物进行分析.结果表明,粉煤灰缩短了硫铝酸盐水泥的凝结时间,当粉煤灰掺量为40%时,初凝时间和终凝时间分别缩短了76 min和94 min;掺入粉煤灰使得硫铝酸盐水泥的抗压强度降低,但在28 d龄期时,粉煤灰掺量为20%的硫铝酸盐水泥复合浆体的抗压强度仅略微降低;在硫铝酸盐水泥体系中掺入粉煤灰时,其浆体化学收缩随着粉煤灰掺量的增加逐渐减小,当粉煤灰掺量为20%和40%时,72 h龄期时的化学收缩值分别为0.138 mL/g和0.088 mL/g,较未掺粉煤灰时分别降低了26%和49%;微观分析表明,掺入粉煤灰后,72 h龄期时的水化产物主要是钙矾石和水化硅酸钙凝胶,并未发现氢氧化钙晶体. 相似文献
2.
研究了沸石粉对硫铝酸盐水泥浆体流动度、凝结时间和抗压强度的影响规律,并通过自收缩、电阻率和XRD测试分析了沸石粉在硫铝酸盐水泥水化行为中的作用机理。结果表明,掺入沸石粉后水泥浆体的流动度明显降低,凝结时间显著延长,且延长时间随掺量的增大呈先增大后减小的趋势。当沸石粉掺量为5%~15%(质量分数)时,硬化水泥浆体的1 d、3 d、7 d抗压强度均有显著提高;沸石粉掺量为10%时,水泥浆体3 d、7 d、28 d的强度增长幅度最大,和空白组相比,分别增长了21.6%、13.9%和5.4%。掺入沸石粉后水泥浆体的24 h电阻率显著增大,硬化浆体的7 d自收缩减小,且在相同龄期时,硬化浆体的自收缩随沸石粉掺量的增大而减小。XRD分析显示沸石粉的掺入能有效促进硫铝酸盐水泥的水化,有利于1 d、3 d和28 d龄期内钙矾石的形成。 相似文献
3.
通过对凝结时间、电阻率和强度的测定,研究了稻草纤维对硫铝酸盐水泥水化特性和力学性能的影响。结果表明,(1)稻草纤维浸提液延长了硫铝酸盐水泥的凝结时间,但会降低硫铝酸盐水泥的强度,且随着浸提液浓度的增加,强度越低;对硫铝酸盐水泥水化产物的种类无影响。(2)用冷水、热水和氢氧化钠预处理稻草纤维,可降低稻草纤维对硫铝酸盐水泥水化的延缓作用和强度的不利影响。 相似文献
4.
锂化合物对硫铝酸盐水泥水化历程的影响 总被引:5,自引:0,他引:5
研究了锂化合物对硫铝酸盐水泥凝结时间、水化历程、水化产物种类和形貌的影响。水化热试验表明:锂化合物的掺入使得硫铝酸盐水泥的水化诱导期消失,直接进入水化加速期,同时使得早期的水化速率和水化放热量显著增加,后期的水化放热量减小。X射线衍射分析表明:锂化合物的作用仅提高了水化产物的生成速率,对水化产物种类无影响。扫描电镜观察结果表明:锂化合物的掺入提高了水化产物的生成速率和生成量。研究结果还表明:空白硫铝酸盐水泥在水化加速期依次出现的3个水化放热峰是由于不同的钙钒石生成阶段所致;在相同的Li+掺量(以摩尔计)下,相对于Li2CO3而言,LiOH·H2O具有更强的加速硫铝酸盐水泥水化的能力。 相似文献
5.
通过测试水泥浆体的凝结时间、抗压强度、电阻率,同时结合水化产物分析及热力学模拟,研究了不同掺量钢渣粉对硫铝酸盐水泥水化行为的影响规律。结果表明,随着钢渣粉质量掺量的增大,初凝时间呈先延长后缩短的趋势,且在掺量为20%时达到最大值。在28 d龄期内,掺入钢渣粉的水泥硬化浆体抗压强度均小于未掺入钢渣粉的硬化浆体,但在龄期达到60 d和90 d时,掺入40%钢渣粉试样的抗压强度均大于未掺入钢渣粉的试样。钢渣粉与硫铝酸盐水泥复合浆体的电阻率在水化初始阶段随着钢渣粉掺量的增大而增大,在水化后期(约3 h后)则随钢渣粉掺量的增大而减小。在1 d龄期内,钢渣粉掺量为40%的试样中的钢渣粉发生了水化反应,使得水泥浆体在减速期的水化速率最大。由热力学模拟结果可知:在钢渣粉掺量为40%的试样中,C2S在10 h后开始进行水化反应,C2ASH8则在168 h后开始生成;当钢渣掺量大于15%时,随着钢渣粉掺量的增大,钙矾石和铝胶的生成量逐渐减少,C2ASH8的生成量逐渐增多。 相似文献
6.
研究了海水拌和与海水养护条件下高贝利特硫铝酸盐水泥(HB-CSA)和普通硅酸盐水泥(OPC)胶砂的抗压强度和抗折强度,采用等温量热法、X射线衍射分析法和热重分析法表征了两种水泥的水化过程和水化产物,分析了海水对HB-CSA水化过程和力学性能的影响。结果表明:海水拌和未明显影响HB-CSA的早期水化过程,海水拌和与海水养护未改变其主要水化产物类型;海水拌和显著加快了OPC的早期水化,海水中的氯盐与OPC的水化产物反应,导致水化氯铝酸钙(Friedel盐)的生成。海水拌和与海水养护对HB-CSA的抗压强度影响较小,但降低了OPC的后期抗压强度。海水养护对HB-CSA和OPC抗折强度的提高较为明显,钙矾石(AFt)含量的增加是抗折强度提高的主要原因。HB-CSA的水化产物中未见Ca(OH)2和单硫型水化硫铝酸钙(AFm),避免了海水侵入后过量CaSO4·2H2O和AFt生成造成的混凝土膨胀开裂和强度下降的危害。 相似文献
7.
钙矾石是硫铝酸盐水泥主要水化产物之一,其稳定性对水泥性能影响很大。将碳酸钙、硝酸钙或亚硝酸钠按不同掺量加入硫铝酸盐水泥,并研究了它们对水泥水化、线性膨胀率和抗压强度等影响。结果表明,掺入这3种物质后可生成相应的阴离子单取代水化铝酸钙(AFm);含硝酸钙或亚硝酸钠净浆线性膨胀率均高于纯硫铝酸盐水泥净浆;含有这3种物质的水泥砂浆56 d龄期抗压强度均高于纯硫铝酸盐水泥砂浆。碳酸钙、硝酸钙或亚硝酸钠可提高硫铝酸盐水泥水化产物钙矾石的稳定性,从而提升水泥性能,其中硝酸钙和亚硝酸钠效果较佳。 相似文献
8.
研究了–10℃环境中氯化钙溶液拌合冷物料条件下,硼砂、葡萄糖酸钠、L(+)-酒石酸对快硬硫铝酸盐水泥凝结硬化行为、强度发展的影响,分析了缓凝剂对水化产物的影响。结果表明:–10℃条件下采用氯化钙溶液拌合时,0.6%掺量硼砂可使初凝时间延长至25 min、终凝时间延长至28 min,而葡萄糖酸钠和L(+)-酒石酸对初终凝时间影响不显著。随着硼砂、葡萄糖酸钠掺量的增加,不同龄期强度均逐渐下降,28 d最大降低值可达到25.5 MPa;L(+)-酒石酸会使得强度下降得更为明显,0.3%(质量分数)掺量时便会使得1 d抗压强度下降10.9 MPa,0.6%掺量时28 d抗压强度下降27.3 MPa。掺0.6%硼砂的1 d试样中钙矾石的形貌未发生明显变化,但生成量减少5.31%;葡萄糖酸钠使钙矾石呈短柱状,生成量几乎不变;L(+)-酒石酸使得钙矾石呈针状,生成量无明显变化。–10℃条件下硼砂可显著延长快硬硫铝酸盐水泥的凝结时间,且适当掺量时强度损失可接受,是适宜的缓凝剂;葡萄糖酸钠、L(+)-酒石酸的缓凝效果不明显,且会改变钙矾石的形态与分布,并会使强度显著下降。 相似文献
9.
10.
11.
研究了聚羧酸系高效减水剂(PCE)和萘系减水剂(FDN)对硫铝酸盐水泥净浆工作性能及力学性能影响,通过XRD和SEM检测手段对水化产物进行表征.结果表明:两种减水剂对硫铝酸盐水泥净浆流动度的影响存在饱和点;相比于FDN型减水剂,PCE型减水剂对硫铝酸盐水泥净浆具有更好的减水效率及分散能力.PCE型减水剂阻碍硫铝酸盐水泥净浆早期水化,并降低硫铝酸盐水泥净浆1 d抗压强度;FDN型减水剂能够加速硫铝酸盐水泥净浆早期水化,缩短初凝和终凝时间,提高硫铝酸盐水泥净浆1d抗压强度.两种减水剂对硫铝酸盐水泥净浆3d后抗压强度及水化产物种类均没有影响. 相似文献
12.
研究了磷酸二氢钾与重烧氧化镁的质量比(P/M)、水胶比对磷酸镁水泥(MPC)硬化性能的影响,并探讨了硼砂对磷酸镁水泥性能的影响.测试了磷酸镁水泥的抗压强度,并利用XRD和SEM分析了磷酸镁水泥的水化产物的物相组成和微观形貌.结果表明,磷酸镁水泥的抗压强度随P/M质量比的增加先增大后减小,当P/M=1∶3时达到最大值,此时产生的水化产物为结晶度很好的板状晶体;随着水胶比的增大,磷酸镁水泥的抗压强度先增大后减小,当其在0.12~0.14时达到最大值;随着硼砂掺量的增加,磷酸镁水泥各龄期的抗压强度先增大后减小,且随着龄期的增长抗压强度逐渐增大;加入硼砂后,磷酸镁水泥晶体呈现出裂纹和缺陷. 相似文献
13.
研究了海水环境下掺入硅灰、粉煤灰、矿渣对硫铝酸盐水泥抗压强度、化学收缩和水化产物的影响规律.结果表明:当硅灰的掺量为2.5%时,水泥浆体的抗压强度比空白组高.矿渣掺量为10%的水泥浆体28 d抗压强度明显超过掺入硅灰和粉煤灰时的强度,60 d强度高于空白组.掺入2.5%硅灰后,水泥浆体的化学收缩增大;在水化早期,粉煤灰和矿渣的火山灰活性很低,导致水泥浆体的化学收缩降低.掺入10%硅灰加快了硫铝酸盐水泥3 d水化反应,钙矾石生成量增多,水泥浆体早期强度比掺其它掺合料有所提高,但体积过快膨胀会破坏其内部结构,对水泥浆体的强度发展不利. 相似文献
14.
白色硅酸盐水泥(白水泥)具有较好的白度,是一种具有装饰效果的胶凝材料。针对该种水泥凝结时间长、早期强度发展慢及收缩变形较大等问题,采用高贝利特硫铝酸盐水泥对白水泥进行改性,系统研究了掺入10%~30%(质量分数)的高贝利特硫铝酸盐水泥对白水泥凝结时间、胶砂强度和自由膨胀率的影响。使用水化微量热仪、XRD、TGA、SEM等方法对复合胶凝体系水化过程、水化产物和微观形貌进行分析。结果表明:高贝利特硫铝酸盐水泥增大了白水泥水化放热率,显著缩短了白水泥的凝结时间;改性后的白水泥水化产物生成了大量的AFt,穿插生长在C-S-H凝胶中,消耗掉了部分Ca(OH)2,使结构更加致密,强度更高,膨胀性能更好。 相似文献
15.
16.
本文研究了普通硅酸盐水泥掺量及不同种类和掺量的矿物掺合料对硫铝酸盐水泥性能的影响.结果表明普通硅酸盐水泥掺量小于60%时,普硅水泥-硫铝酸盐水泥体系(OPC-SAC体系)的胶砂强度随着普通硅酸水泥掺量的增加而降低,普通硅酸盐水泥掺量大于60%时,OPC-SAC体系的胶砂强度随着普通硅酸水泥掺量的增加而增大.并且对早期强度的影响较大.在硫铝酸盐水泥体系中掺入矿渣、粉煤灰和硅灰时,其胶砂强度随着掺量的增加而降低,在相同掺量下,矿物掺合料对强度的贡献率为:硅灰>矿粉>粉煤灰,对凝结时间的影响强弱为:硅灰>矿粉>粉煤灰. 相似文献