首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
简要介绍高性能大型关键金属构件激光增材制造的技术特点,总结本团队在高性能大型关键钛合金构件激光增材制造过程中,对凝固晶粒形态和显微组织控制的主要研究进展:发现了钛合金构件激光增材制造过程中熔池底部外延生长和顶部异质形核两种主要形核生长机制,建立了基于增材制造工艺参数及凝固条件控制的全柱状晶、全等轴晶和柱状晶-等轴晶混合组织等凝固晶粒形态主动控制技术;发现了激光增材制造双相钛合金构件高性能特种双态显微组织新形态,并建立其固态相变理论及显微组织主动控制技术。  相似文献   

2.
Microstructural features of a duplex-phase Zr-2.5Nb alloy were investigated in detail using electron channeling contrast(ECC)imaging and electron backscatter diffraction(EBSD)technique in an emission gun scanning electron microscope(FEGSEM).The excellent resolution provided by the FEGSEM promises the combined utilization of both techniques to be quite adequate for characterizing the duplex-phase microstructures.Results show that the microstructure of the Zr-2.5Nb alloy is composed of bulkαgrains(majority)in equiaxed or plate shape and thinβfilms(minority)surrounding the bulk grains,with their average grain size and thickness measured to be 1.4μm and 72 nm,respectively.Analyses onα-grain boundaries reveal a number of low angle boundaries,most of which belong to deformation-induced dislocation boundaries.Measurements on relative proportions of various Burgers boundaries suggest very weak(if any)variant selection duringβ→αcooling,which should be related to deformation-induced higher nucleation rate ofαphases.Compared to earlier attempts,more satisfactory indexing of fineβphases(down to nanoscale)is attained by the FEGSEM-based EBSD.Examples are presented to clearly reveal well-obeyed Burgers orientation relationships between adjacentαandβphases.Finally,it is deduced that continuing application of the FEGSEM-based EBSD to duplex-phase Zr alloys could help clarify controversies like the deformation priority of the two phases.  相似文献   

3.
The microstructure, mechanical properties, and misorientation of automobile beam steels produced by EAF-CSP process were studied using optical microscopy (OM) and electron back-scattered diffraction (EBSD). It is shown that the microstructure of strips is mainly polygonal ferrite, and the average grain size is about 5-8 μm. The electron back-scattered diffraction results show that grain boundaries in ferrite are basically high-angle grain boundaries without remarkable preferred orientation. Hot strips of automobile beam steels possess a good combination of strength and plasticity because of their fine microstructures and low quantity of impurities.  相似文献   

4.
The microstructure and precipitation mechanism of ultra-thin hot strip produced by CSP technology were analyzed by electron back scattered diffraction(EBSD),H-800 transmission electron microscope(TEM) and thermodynamics theory.The EBSD results show that the finishing hot rolling microstructures are mixture of recrystallized and deformed austenite.After phase transformation,ferrite grains embody subastructures and dislocations that led ultra-thin hot strip high strength and relatively low elongation rate.TEM observations show that there are a lot of fine and dispersive precipitates in microstructures.Most of aluminium nitrides are in grains.While coexisted precipitates of MnS along grain boundaries,Coexisted precipitates compose cation-vacancy type oxides such as Al2O3 in the core,while MnS at the fringe of surface.At the same time,reasons for microstructure refinement and strengthening effect were invstigated.  相似文献   

5.
The microstructure in the electroformed copper liners of shaped charges prepared with different electrolytes was studied by Scanning Electron Microscopy (SEM) and Electron Backscattering Kikuchi Pattern (EBSP) methods. SEM observations revealed the existence of columnar grains in electroformed copper liners of shaped charges formed by electrolyte without any additive and the average grain size is about 3 μm. When an additive is introduced to the electrolyte, the grains formed in the copper liners become equiaxed and finer. EBSP results show that the columnar grain grown during electroformation has the most preferential growth direction, whereas a micro-texture does not exit in the specimen prepared by electrolyte with the additive. Further, explosive detonation deformation experiments show that penetration depth is dramatically improved when the electroformed copper liners of shaped charges exhibit equiaxed grains.  相似文献   

6.
为了研究Al-Cu-Mg硬铝合金TIG焊焊接接头的组织与力学性能,采用ER4043焊丝对2A12硬铝合金进行了焊接实验.利用光学显微镜、扫描电子显微镜、透射电子显微镜、能谱分析仪和硬度计对Al-Cu-Mg硬铝合金的组织和力学性能进行了表征.结果表明,焊缝的强度和塑性较低,焊缝边缘为柱状晶,中心为枝晶组织,晶界存在大量低熔点共晶体.近缝区存在明显的晶界液化现象,晶粒为圆润的等轴晶,焊缝的硬度大幅度下降.固溶区焊缝的硬度和母材相近,基体中存在大量的针状S'相,可对该区域起到强化作用.过时效区基体软化现象比较严重,存在很多S(Al2Cu M g)相.  相似文献   

7.
The aspects of two pipeline steels with different technologies were investigated by using transmission electron microscopy (TEM) and electron back-scattered diffraction (EBSD).The microstructure presents a typical acicular ferrite characteristic with free particles of martensite/austenite (M/A) constituent,which distributes in grains and at grain boundaries.The bulk textures of the pipeline steel plate are {112}<110> and <111> fibers,respectively,and the {112} <110> component is the favorable texture benefiting for drop weight tear test.Moreover,low angle boundaries and low coincidence site lattice boundaries are inactive and more resistant to fracture than high energy random boundaries.  相似文献   

8.
研究了厚度为1.8mm的超高强度钢板的激光焊接性能,分析了焊接速度对焊缝微观组织和显微硬度的影响。试验结果表明,超高强度钢焊缝组织为板条马氏体。采用苦味酸溶液显示原奥氏体晶界,发现原奥氏体呈现柱状晶的晶体形态。随着焊接速度的增加,原奥氏体晶粒尺寸变小,焊缝中心由细小的胞状树枝晶变为等轴晶。焊缝硬度随着焊接速度的增加而增大。  相似文献   

9.
针对含有较多合金元素的镍基单晶高温合金熔焊焊接性能较差的问题,采用扫描电子显微镜、背散射衍射分析和显微硬度仪等手段,研究了镍基单晶高温合金DD8和钴基等轴晶K640M的氩弧焊焊接显微组织特征.结果表明,焊接后接头形成定向柱晶区、熔合区和母材区.对实验合金进行焊后热处理后发现,熔合区和定向柱晶区中γ相发生长大,且Co等元素的分布趋于均匀,焊接残余应力的存在导致个别位置出现再结晶现象.热处理前后接头内显微硬度无明显变化.  相似文献   

10.
A recrystallization and partial melting(RAP) process was introduced to prepare the semi-solid 7075 aluminum alloy used for thixoforming. In order to obtain an ideal semi-solid microstructure, a series of extrusion experiments were conducted to comparatively investigate the optimum extrusion process parameters. Commercial 7075 Al alloy samples were firstly extruded with varying extrusion ratios below the recrystallization temperature followed by homogenization, then these samples were reheated to the semi-solid state and held in the range of 5 to 50 minutes. The experimental results show that varying process cause the difference in the deformation degree and microstructure for as-extruded samples, resulting in various semi-solid microstructure. It is verified that the formation of equiaxed grains in semi-solid microstructure depends on recrystallization behavior of extruded samples during partial melting. Both relative high extrusion temperature and low extrusion ratio lead to high volume fraction of recrystallized area, thus entirely equiaxed solid grains in semi-solid 7075 Al alloy samples can be obtained finally. In addition, Ostwald ripening was determined as the dominate coarsening mechanism of solid grains in semi-solid state for this 7075 Al alloy during the RAP route. The influence of predeformation on recrystallization behavior of this 7075 Al alloy was discussed in detail.  相似文献   

11.
借助电子背散射衍射(EBSD)技术测量和计算了无取向硅钢再结晶退火后再结晶百分比、晶粒尺寸、取向差分布等参数,分析了再结晶退火温度对无取向硅钢晶粒大小、微观取向和耐蚀性的影响。结果表明,3个温度(810、840、880℃)下退火3 min后,再结晶均充分完成。随着退火温度的升高,再结晶晶粒尺寸长大。拥有{100}面织构的晶粒比其他取向晶粒具有更好的耐蚀性,侵蚀后晶粒凸出于试样表面。880℃退火后的小尺寸晶粒周围多为小角度晶界,不易迁移,不易被侵蚀。  相似文献   

12.
Inconel 718 superalloys deposited by laser solid forming (LSF) were heat treated with solution treatment,intermediate heat treatment (IHT) and two-stage aging treatment in sequence (SITA heat treatment).The effect of IHT temperature on microstructure,tensile property and notch sensitivity of LSFed Inconel 718 superalloy at 500 ℃ were investigated.As-deposited columnar grains have transformed to equiaxed grains and the grains were refined due to the recrystallization during the SITA heat treatment.It is found that the size and amount of δ phase dispersed at grain boundaries decreased with the increasing of IHT temperature,and δ phase disappeared when the IHT temperature reached 1 020 ℃.The ultimate tensile strength (UTS) and yield strength (YS) of smooth samples increased to a maximum when the IHT temperature reached 980 ℃ and then decreased slightly to a minimum when the IHT temperature was 1 000 ℃,and followed by slight increasing again till the IHT temperature reached 1 020 ℃,resulted from the competition of precipitation strengthening effect of γ″ and γ’ phase and the grain boundary weakening effect caused by the gradual disappearance of δ phase with increasing the IHT temperature.The notch sensitivity factor (qe) decreased but still greater than 1 as the IHT temperature increased,which is attributed to the decrease of the size and amount of δ precipitation.  相似文献   

13.
采用搅拌摩擦焊接法焊接了5083-H321铝合金板材,借助光学显微镜、扫描电镜、背散射电子衍射分析仪及取向显微成像分析技术对焊缝与母材的组织进行了对比性研究.结果表明,该合金板材的焊缝无宏观缺陷,焊缝成形区呈现出与母材明显不同的组织特征;搅拌摩擦焊使该合金板材中大量的小角度晶界转化为大角度晶界,母材和焊核区的晶粒尺寸分布范围分别为6-55 μm及15-30 μm,晶粒纵横比分布范围分别为2~8和15-3,焊核区呈现均匀化与等轴化的动态再结晶特征.  相似文献   

14.
采用激光熔凝对4Cr5MoSiV模具钢进行了表面改性处理,研究了激光熔凝处理对模具钢组织和力学性能的影响.结果表明,材料经熔凝处理后,由表及里依次为熔凝层、淬火层、热影响区和基体.熔凝层由典型的柱状晶组成,熔凝层和淬火层之间存在一层极薄的等轴晶区;淬火层的晶粒发生细化和超细化.强化层厚度达1.1mm,平均硬度比基体提高26%,热影响区的厚度为0.3mm左右,强化层的耐磨性和耐腐蚀性显著提高.  相似文献   

15.
An Al-50wt^TiC composite was directly synthesized by self-propagating high-temperature synthesis(SHS) technology,and then was used as a grain refining master alloy for commercially pure aluminun.The microstructure and grain refining performance of the synthesized master alloy were emphatically investigated.The SHS master alloy only ocntained submicron TiC particles except for Al matrix.Moreover,TiC particles were relatively free of agglomeration.Grain refining tests show that adding only 0.1wt^ of the master alloys to the aluminum melt could transform the sturcture of the solidified samples from coarse columnar grains to fine almost 1.5h at 1003K.Therefore,it is concluded that the SHS master alloy is an effective grain refiner for aluminum and its alloys,and that it is highly resistant to the grain refining fading encountered with most grain refiners.  相似文献   

16.
The deformation microstructure evolution of single crystal copper wires produced by OCC method has been studied with the help of TEM, EBSD and OM. The results show that there are a small number of dendrites and twins in the undeformed single crystal copper wires. However, it is difficult to observe these dendrites in deformed single crystal copper wires. The structure evolution of deformed single crystal copper wires during drawing process can be divided into three stages. When the true strain is lower than 0.94, macroscopic subdivision of grains is not evident, and the microscopic evolution of deformed structure is that the cells are formed and elongated in drawn direction. When the true strain is between 0.94 and 1.96, macroscopic subdivision of grains takes place, and the number of microbands located on {111} and cell blocks is much more than that with the true strain lower than 0.94. When the true strain is larger than 1.96, the macroscopic subdivision of grains becomes more evident than that with the true strain between 0.94 and 1.96, and S-bands structure and lamellar boundaries will be formed. From EBSD analysis, it is found that part of 〈100〉 texture resulting from solidifying is transformed into 〈111〉 and 〈112〉 due to shear deformation, but 〈100〉 texture component is still kept in majority. When the true strain is 0.94, the misorientation angle of dislocation boundaries resulting from deformation is lower than 14°. However, when the true strain arrives at 1.96, the misorientation angle of some boundaries will be greater than 50°, and the peak of misorientation angle distribution produced by texture evolution is located in the range between 25° and 30°. Supported by the National Natural Science Foundation of China (Grant Nos. 50471098 and 59971033), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2003E101), and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institution of MOE, China  相似文献   

17.
本文对纯镍多晶体循环形变过程中位错结构,特别是驻留滑移带(PSB)的形成及特性进行了TEM研究,并用选区电子衍射确定了晶粒膜面及其它晶体学取向。结果表明在循环饱和的开始点附近已观察到以梯状花样为特征的PSB;证明循环硬化阶段的末端基本上与PSB的成核相对应。并证实PSB结构是一种体效应。  相似文献   

18.
为了研究直流横向磁场对Fe90堆焊层组织和性能的影响,在Fe90自熔堆焊合金的等离子弧堆焊过程中引入直流横向磁场,采用洛氏硬度仪、磨损试验机对不同规范下试样的硬度、耐磨损性进行测试,采用OM及SEM对堆焊层进行显微组织分析,进而揭示外加磁场对堆焊层性能的作用机理.结果表明,施加磁场的堆焊层要比无磁场作用的堆焊层硬度高、耐磨性好;当堆焊电流为I=180 A,磁场电流为Im=3 A时,堆焊层性能取得最佳值,其磨损量为0.4218 g,表面硬度HRC为72.1.外加磁场提高堆焊层性能的主要原因是电弧和熔池在磁场作用下运动状态发生改变,改善了堆焊层组织,使堆焊层的组织由柱状晶转化为等轴晶并细化晶粒,进而提高堆焊层的综合力学性能.  相似文献   

19.
利用小型搅拌摩擦焊机焊接5083铝合金板材,借助电子背散射衍射技术和取向成像分析软件对焊缝焊核区的焊核前进侧、焊核中心区和焊核后退侧的晶粒形貌和取向差角度进行了对比性研究.结果表明:经过搅拌摩擦焊接后,焊核区发生动态再结晶,晶粒由原始带状转变为等轴状,其大角度晶界含量相比于母材有明显增加,但不同部位的晶粒尺寸和大角度晶界比例均不同,焊核前进侧、焊核中心区和焊核后退侧的平均晶粒尺寸分别为17.0、15.8和13.5 μm,大角度晶界比例分别为76.4%、68.8%和73.2%.  相似文献   

20.
基于元胞自动机(CA)和有限元(FE)耦合法对单晶铜杆热型连铸过程中晶粒生长及演化过程进行了模拟,获得了稳定状态下铸棒内温度分布及液固相界面的位置和形态,模拟了连铸初期沿热流方向细小等轴晶快速合并形成柱状晶的过程,采用截面形态和极图法分析了定向凝固条件下各个生长时刻的晶粒形貌和晶粒生长取向以及晶粒竞争生长过程中的快速淘汰和慢速淘汰阶段,为热型连铸工艺优化提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号