首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The discharge of azo dyes into the environment poses concerns due to their limited biodegradability. The electro‐Fenton process (EF) is a good method to effectively degrade these dyes. The aim of this work was to study the mechanism and the feasibility of the EF reaction using an activated carbon fibre (ACF) cathode. In this study, two methods were used to measure the reactive species generated in anodic oxidation (AO), anodic oxidation with electrogenerated H2O2 (AO‐H2O2) and the EF process. Acid Red 14 (AR14) was chosen as a model pollutant. The effects of the operational parameters, pH and initial concentrations were investigated. A short‐term biodegradability test was also carried out to evaluate the EF process from a biological point of view. RESULTS: After 2 h EF reaction 118.7 µmol L?1?OH were produced, which was much higher than that of the AO‐H2O2 (63.2 µmol L?1) process. H2O2 is largely generated and Fe3+ efficiently reduced on the high surface area of the ACF cathode. The EF process provides more effective degradation of AR14 than the conventional Fenton process, and its current efficiency is significantly affected by the initial pH and the initial AR14 concentration. Following EF treatment, the biodegradability of AR14 is significantly increased. CONCLUSION: The higher formation of ?OH in the EF process suggests it is an effective method for pollutant removal. This process also leads to increased biodegradability, which is expected to facilitate subsequent biological treatment. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
The simulated dye wastewater containing alizarin red S (ARS) was electrochemically oxidized using an activated carbon fiber (ACF) felt as an anode. The removal efficiency of color and chemical oxygen demand (COD) was evaluated by comparing ACF adsorbents with ACF anodes. The experimental results show that the electrochemical oxidation method using ACF as anode can effectively remove dyestuff pollutant from wastewater. About 98% of the color removal ratio and 76.5% of the maximum COD removal ratio are achieved after 60 min of electrolysis. It is suggested that ARS was adsorbed and concentrated on the ACF anode due to its high surface area; the simultaneously electrochemical oxidation of the ARS may regenerate the ACF anode, which enhance the electrolysis efficiency of the ARS.  相似文献   

3.
In this paper, the degradation of azo dye C.I. Acid Red 18 (AR18) with initial concentration of 100 mg L−1 in aqueous solution by ozone-electrolysis process (OEP) as hybrid method of advance oxidation process was investigated. All experiments were performed in a 450 mL mixed semi-batch reactor to obtain the optimal conditions. The effects of NaCl concentration as supporting electrolyte, current density and initial pH on the removal efficiency of AR18 solution were investigated. The efficiency of color and TOC removal were compared as functional of degradation and decolorization of AR18. The results of UV/vis spectra showed that the AR18 structures were destroyed under ozone-electrolysis reaction. This investigation revealed ozone-electrolysis presents good efficiency for both solution decolorization and total organic carbon (TOC) removal. Results of experiments indicated that ozone-electrolysis process has a synergistic effect on decolorization rate of AR18.  相似文献   

4.
The investigation was undertaken to evaluate the effectiveness of using activated carbon (AC) in conjunction with ultrafiltration (UF) in the removal of methylene blue (MB) from aqueous solutions. The combination of activated carbon with UF in this work was to exploit the high adsorption capabilities of AC and the particle removal ability of UF simultaneously. The process was experimentally investigated using granulated and commercial powder-activated carbons. Experiments were conducted in order to study the effects of carbon type, carbon dose, and operating pressure on the process performance. The results obtained showed that the combined process achieved better rejection of dye than the OF process. Furthermore, powder-activated carbons were more effective than the granulated type.  相似文献   

5.
In this report, commercial TiO2 nanoparticles were doped with nitrogen by a manual grinding method using urea. The prepared catalyst was characterized by X-ray diffraction (XRD), diffuse reflectance spectra (DRS), and transmission electron microscopy (TEM). N-doped TiO2 was immobilized on ceramic plates by methyl tri-methoxy silane. Next, multi-walled carbon nanotubes (CNTs) were stabilized on carbon paper to fabricate the cathode. Scanning electron microscopy (SEM) was employed to confirm stabilization of the CNTs. The prepared cathode and immobilized catalyst were utilized for the degradation of C.I. Direct Red 23 (DR23) by the photoelectro-Fenton (PEF) process in the presence of citrate (Cit) combined with a photocatalytic process. The coupled PEF/Cit/N-TiO2 process could be performed under visible light, not only due to the formation of iron–citrate complexes, but also because of the incorporation of nitrogen to the crystalline structure of TiO2 and the generation of TiO2 complexes with electrogenerated H2O2. Results demonstrated that the degradation efficiency of DR23 (20 mg/L) using the identical operational conditions, followed a decreasing order of: PEF/Cit/N-TiO2 > PEF/Cit > PEF > EF > N-TiO2. Eventually, a model was developed by the central composite design (CCD) method, describing the degradation efficiency as a function of the operational parameters.  相似文献   

6.
以250 W金属卤化物灯(λ365 nm)为光源,二氧化钛为催化剂,研究了经分子识别作用后的酸性红B光催化降解行为,考察了影响光催化降解的条件因素。研究结果表明:对于20 mg/L的酸性红B,经β-环糊精分子识别后酸性红B的光催化降解效率可以提高24%;β-环糊精浓度、pH值和TiO2剂量对酸性红B的光催化降解速率有明显的影响。分子识别作用下酸性红B光催化降解的增强效应主要源于β-环糊精能有效促进酸性红B在TiO2表面的吸附。  相似文献   

7.
Ji Yang  Feng Zhang 《Carbon》2006,44(1):19-26
Commercial activated carbon fiber (ACF) was modified and employed to prevent iron corrosion in industrial water supply and circulation system. Static and dynamic experiments were carried out under varying conditions, including different pHs, different temperatures, different adsorbent quantities and different adsorbents. The primary objective was to experimentally demonstrate the suitability of ACF in effectively preventing iron corrosion in water under varying operating conditions, and compare its performance vis-à-vis to that of the other commercially available adsorbents, such as granular activated carbon (GAC) and powdered activated carbon (PAC). Iron sheet static corrosion simulation test as well as dynamic corrosion simulation test was performed to verify the idea. It was found out that ACF could significantly decrease the zeta potential (from 329 mV to 203 mV when 100 mg ACF was added to 200 ml water) and dissolved oxygen concentration (from 9.60 mg/l to around 9.18 mg/l when 200 mg ACF was added to 200 ml water) of the solution, thereby slowing down iron corrosion rate.  相似文献   

8.
Adsorption of cationic dye from aqueous solutions by activated carbon   总被引:1,自引:0,他引:1  
Batch sorption experiments were carried out to remove a cationic dye, methylene blue (MB), from its aqueous solutions using a commercial activated carbon as an adsorbent. Operating variables studied were pH, stirring speed, initial methylene blue concentration and temperature. Adsorption process was attained to the equilibrium within 5 min. The adsorbed amount MB dye on activated carbon slightly changed with increasing pH, and temperature, indicating an endothermic process. The adsorption capacity of methylene blue did not significantly change with increasing stirring speed. The experimental data were analyzed by various isotherm models, and found that the isotherm data were reasonably well correlated by Langmuir isotherm. Adsorption measurements showed that the process was very fast and physical in nature. Thermodynamic parameters such as the adsorption entropy (ΔSo) and adsorption enthalpy (ΔHo) were also calculated as 0.165 kJ mol−1 K−1 and 49.195 kJ mol−1, respectively. The ΔGo values varied in range with the mean values showing a gradual increase from −0.256 to −0.780 to −2.764 and −7.914 kJ mol−1 for 293, 313, 323 and 333 K, respectively, in accordance with the positive adsorption entropy value of the adsorption process.  相似文献   

9.
以活性炭纤维为催化剂,采用微波诱导氧化工艺处理亚甲基蓝废水,考察了活性炭纤维用量、微波辐射时间、溶液浓度、pH值、盐含量、过氧化氢加入量等因素对处理效果的影响。结果表明,0.05 g活性炭纤维与400 mg/L 25 mL废水混合,在微波功率1 000 W,辐射时间120 s的条件下,亚甲基蓝的去除率达到98.2%,pH、盐和过氧化氢加入量对处理效果有不同的影响。微波诱导氧化、活性炭纤维吸附、单独微波辐射和沸水浴加热四种不同工艺的对比实验表明,微波诱导氧化工艺具有明显的优越性,不会对环境造成二次污染,机理是通过吸附和高温氧化协同作用。氧化动力学过程符合一级反应规律。活性炭纤维催化活性随着使用时间增加而减弱,连续使用29 min,催化能力几乎消失。  相似文献   

10.
We have developed a novel heterogeneous metallophthalocyanine catalyst, Co-TDTAPc–ACF, by immobilizing cobalt tetra(2,4-dichloro-1,3,5-triazine)aminophthalocyanine (Co-TDTAPc) on activated carbon fiber (ACF) covalently. The oxidative removal of 4-nitrophenol (4-NP) in the Co-TDTAPc–ACF/H2O2 system, based on phase transfer catalytic oxidation, was investigated in aqueous solution by ultra-performance liquid chromatography (UPLC). The results indicated that 4-NP could be removed efficiently by catalytic oxidation in the presence of Co-TDTAPc–ACF and H2O2. In addition, the removal of total organic carbon of 4-NP accounted for about 90% in 300 min of reaction. Gas chromatography/mass spectrometry (GC–MS) analysis showed that the residue products were mainly small molecular compounds such as maleic acid and succinic acid, etc. This system exhibited high catalytic activity across a wide pH and temperature range. Importantly, compared with homogeneous Co-TDTAPc used alone, the introduction of ACF contributed specifically to the activity enhancement of Co-TDTAPc. Controlled experiments showed that the presence of 2-propanol, as hydroxyl radicals scavenger, has little influence on 4-NP oxidation. The further result of electron paramagnetic resonance (EPR) spin-trap experiments indicated that free radicals did not dominate the reaction in our system. This paper discusses a possible catalytic oxidation mechanism of the Co-TDTAPc–ACF/H2O2 system. Repetitive tests showed that Co-TDTAPc–ACF can maintain high catalytic activity over several cycles, and it has a better regeneration capability under mild conditions. We conclude that phase transfer catalytic oxidation has proven itself to be a feasible approach which may be potentially applied to the elimination of widely existing pollutants.  相似文献   

11.
The main objective of this work is to prepare activated carbon fibers (ACF), analyze a synthesis mechanism of those fibers, and develop a new dye adsorption model. The surface chemical structures of the synthesized viscose rayon phosphates and ACF were analyzed using TOF-SIMS and ATR FT-IR. After steam-activation of carbon fiber at high temperature, the carboxyl group could not be observed due to the high temperature activation. Only the oxygen-contained carbon ring groups appeared. The adsorption mechanism of the developed model in this study, the bottle-neck model, was simple to understand and apply to the industrial adsorption plants. The model could predict theoretical concentration versus time or dye concentration in an ultra accurate manner in the medium and low concentration regions, which could not previously be attempted by other models.  相似文献   

12.
The removal of the anthraquinone dye Alizarin Red S (AR) has been investigated by electro-Fenton process using a commercial graphite-felt to electrogenerate in situ hydrogen peroxide and regenerate ferrous ions as catalyst. The effect of operating conditions such as applied current, catalyst concentration, and initial dye content on AR degradation has been studied. AR decay kinetic, the evolution of its oxidation intermediates and the mineralization of the aqueous solutions were monitored during the electrolysis by UV–Vis analysis and TOC measurements. The experimental results showed that AR was completely removed by the reaction with OH radicals generated from electrochemically assisted Fenton's reaction, and the decay kinetic always follows a pseudo-first-order reaction. Applying a current of 300 mA and with catalyst concentration of 0.2 mM Fe2+, 95% of the initial TOC was removed in 210 min of electrolysis, meaning the almost complete mineralization of the organic content of the treated solution.  相似文献   

13.
聚丙烯腈(PAN)中空纤维在空气中250℃预氧化2 h后,在氮气气氛中炭化,得到PAN基中空炭纤维(PAN-CHF),再在二氧化碳气氛中活化,得到PAN基活性中空炭纤维(PAN-ACHF)。考察了炭化温度和炭化时间对PAN-CHF的收缩率、PAN-ACHF的收缩率、活化收率、比表面积和吸附性能的影响。结果表明:炭化温度为1 000℃时,PAN-CHF和PAN-ACHF的收缩率相同;炭化温度为900℃时,PAN-ACHF的比表面积最大,吸附性能最好,炭化时间对PAN-CHF和PAN-ACHF的收缩率影响不大,但活化收率随炭化时间延长呈上升趋势,比表面积先增后降,炭化时间为60 min时达到最大,其吸附量最大。  相似文献   

14.
15.
Continuous anodic oxidation of azo dye C.I. Acid Red 18 by using PbO2 electrode in aqueous solution was studied. To reach the best conditions of the process, the influence of various operating parameters such as pH, current density, hydraulic retention time (HRT) and dye concentration on the removal rate of chemical oxygen demand (COD) and color, as indexes showing the amount of efficiency, was investigated. The findings showed that, respectively, 99.9% and 80.0% of the dye and COD were removed (at optimized conditions). Mineralization current efficiency results indicated that at the beginning of the reaction mineralization occurred quickly at a low current density, whereas at high amounts the rate of mineralization the efficiency decreased. At the optimum conditions, the majority of COD was removed only with 38.2 kWh/kg COD of energy consumption in 120 min. By controlling HO?/dye concentration ratio via the parameters adjustment, particularly HRT and current density, this system can treat Acid Red 18 well even at high concentrations. Furthermore, the voltammetry study illustrated that electroactive intermediates created during the process were mineralized at current density of 8.6mA/cm2.  相似文献   

16.
To well describe the photoassisted-electrochemical process for treatment of the contaminated water, a new kinetic model was established based on the intrinsic reactions of the process. The kinetic model correlated apparent kinetic constants to operational parameters including applied current, initial dye concentration and flow rate. Degradation experiments were carried out with boron-doped diamond (BDD) anode and carbon nanotubes–polytetrafluoroethylene (CNTs–PTFE) cathode. The proposed kinetic model was validated by the experiments of C.I. Acid Blue 92 degradation in aqueous solution. The goodness of fitting (R2 = 0.96) demonstrated that the new model could describe both the kinetics and the hydrodynamics of the photo-electrochemical system.  相似文献   

17.
P.N. Palanisamy 《Desalination》2009,249(1):388-397
Adsorbents prepared from waste plants for the treatment of dyeing effluents have high significance in environmental sustainability. In this research, an attempt is made to analyze the applicability of activated carbon prepared from Euphorbia antiquorum L wood by H3PO4 activation method for the removal of Acid Blue 92 dye. Various kinetic models were used for the analysis of adsorption kinetics and pseudo second-order model fits well for the selected adsorbent-adsorbate system. The moderate rate of dye uptake indicates that the rate-determining step could be physisorption in nature. Langmuir, Freundlich and Dubinin-Raduskevich isotherm models were applied for the analysis of isotherm data. The positive enthalpy of adsorption substantiates that the adsorption process is endothermic in nature.  相似文献   

18.
Removal of volatile organic compound by activated carbon fiber   总被引:2,自引:0,他引:2  
Debasish Das 《Carbon》2004,42(14):2949-2962
Experiments were carried out to study adsorption/desorption of volatile organic compound (VOC) on the activated carbon fiber (ACF) under dynamic conditions. The primary objective was to experimentally demonstrate the suitability of ACF in effectively adsorbing VOCs from inert gaseous stream under varying operating conditions, and compare its performance vis-à-vis that of the other commercially available adsorbents, such as granular activated carbon (GAC), silica gel, and zeolites. The adsorption experiments were carried out in a fixed tubular packed bed reactor under various operating conditions including temperature (35-100 °C), gas concentration (2000-10,000 ppm), gas flow rate (0.2-1.0 slpm) and weight of the adsorbent (2-10 g). A mathematical model was developed to predict the VOC breakthrough characteristics on ACF. The model incorporated the effects of the gas-particle film mass transfer resistance, adsorbent pore diffusion and the adsorption/desorption rates within the pore. The experimental data and the corresponding model simulated results were compared and found to be in good agreement. The ACF repeatedly showed a good regeneration capability following desorption by DC electrical heating.  相似文献   

19.
通过静态和动态试验对活性炭纤维吸附废水中的酚进行了研究,测定了吸附等温线,考察了活性炭纤维的用量、苯酚浓度,以及过柱流速对吸附的影响.结果表明,活性炭纤维对苯酚的动态吸附容量为256 mg/g随着活性炭纤维用量的增加,处理水稳定时间延长;苯酚浓度越高,穿透时间越短;过柱流速越大,穿透时间越短;吸附饱和后的活性炭纤维再生后,吸附容量几乎不变.  相似文献   

20.
固定化生物活性炭纤维处理餐饮污水   总被引:2,自引:1,他引:2  
采用固定化生物活性炭纤维技术处理餐饮污水,在原水COD、油的平均质量浓度分别为961、254 mg/L时,经过砂滤、曝气、生物活性炭纤维柱后,COD去除率为84%,油的去除率为91%。试验结果表明:固定化生物活性炭纤维技术对餐饮废水有较好的处理效果,出水水质稳定,可达标排放。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号