首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In-situ particle-reinforced aluminum alloy-based cast composites have been synthesized by solidification of the slurry obtained by dispersion of externally added titanium dioxide (TiO2) particles in molten aluminum at different processing temperatures. Alumina particles (Al2O3) form in situ through chemical reaction of TiO2 particles with molten aluminum. Simultaneously, the chemical reaction also releases titanium, which dissolves into molten aluminum and results in the formation of intermetallic phase Ti(Al1−x ,Fe x )3 during solidification. Increasing the processing temperature increases (1) the amount of elongated as well as blocky intermetallic phase Ti(Al1−x ,Fe x )3, (2) the proportion of alumina particles in the reinforcing oxides, and (3) the porosity content in the resulting cast in-situ composite. The difference in particle content and porosity between the top and the bottom of the cast ingot increases with increasing processing temperature. The hardness of the cast in-situ composite is significantly more than that of the matrix alloy due to the presence of reinforcing particles, but the hardness is greatly impaired by the presence of porosity at the top of the cast ingot. The percent elongation of the cast in-situ composite decreases with increasing processing temperature possibly due to increasing porosity as well as an increasing amount of elongated intermetallic phase, which affects the percent elongation of the matrix alloy. The tensile and yield stresses of the cast in-situ composite decreases with increasing processing temperature again due to increasing porosity, which affects the ultimate tensile stress more than the yield stress. In the cast in-situ composite containing 3.31 ± 0.77 vol pct of porosity, the Brinell hardness is about 6 times its yield stress. The estimated yield stress of the cast in-situ composite at zero porosity as given by the linear least-squares fit appears to increase with particle content at a significantly higher rate than that predicted by the shear-lag model.  相似文献   

2.
通过SiC颗粒自增粘熔体发泡法工艺制备得到泡沫铝基材料的铸锭;对制得的泡沫铝铸锭进行各个层面上不同部位的平均孔径和平均孔隙率的测定,得到了铸锭内部的孔隙率和孔径在铸锭径向和高度方向上的变化规律;并且讨论和研究了熔体未发泡区域的形成原因,得到了熔体直接发泡法制备泡沫材料时气孔的形成过程模型。  相似文献   

3.
The electromagnetic field and flow analysis model were developed to simulate the electromagnetic field and the flow pattern in a vertical curved continuous slab caster with the in-roll type strand electromagnetic stirring.The transient electromagnetic field distribution and the induced electromagnetic force were numerically described.The effects of stirring current,stirring frequency,and different stirrer configurations on the electromagnetically driven flow field in the strand were investigated and the optimization of the stirring parameters was discussed by performing a relative comparison of numerical results.Results show that the in-roller type strand electromagnetic stirrer(SEMS)pair generates the fluctuating magnetic fields,penetrating through the cast slab and periodically parallel shifting along the slab wide face with time evolution.The transient induced electromagnetic forces travels toward the magnetic flux shifting direction.Different stirring parameters(i.e.current and frequency)and stirrer configurations affect the stirring strength and the flow recirculation pattern in the strand,which are closely related to metallurgical performances of the stirrers.There is an optimum frequency to obtain the maximum stirring.The present model provides a relatively theoretical insight into the in-roll type strand electromagnetic stirring system for best operating.  相似文献   

4.
搅拌器的结构参数对钢液内电磁场和流场分布的影响   总被引:7,自引:1,他引:6  
利用ANSYS5.6软件对单侧线性电磁搅拌作用下钢液内的电磁场分布和流场分布进行了数值模拟,分析了搅拌器的结构参数对钢液流动状况的影响,结果表明,在搅拌器长度,线圈匝数及电流强度均相同的条件下,采用集中绕组的搅拌器所产生的电磁场最弱,而重叠绕组搅拌器和克兰姆绕组搅拌器的电磁利用率较高,所产生的磁场强度越大,钢液的流动速度和紊流动能均较大;此外,尽管磁轭不影响电磁场的分布趋势,但却显影响磁场强度的大小,所以,在数值模拟中应当考虑磁轭的存在,当搅拌器极距和其它参数一定时,增加搅拌器长度有利于扩大搅拌的作用范围,但对提高搅拌无明显效果,在搅拌器长度和其它参数一定的情况下,增大搅拌器的极距却不影响搅拌的作用范围,但却使搅拌强度明显提高。  相似文献   

5.
Cast particulate composites, containing in-situ generated reinforcing particles of alumina, have been developed by solidification of slurry obtained by dispersion of externally added manganese dioxide particles (MnO2) in molten aluminum, and alumina is formed by reaction of manganese dioxide with molten aluminum. The chemical reaction also releases manganese into molten aluminum. Magnesium is added to the melt in order to help wetting of alumina particles by molten aluminum and to retain the particles inside the melt. The present work aims to understand the influence of key parameters such as processing temperature, time, and the amount of MnO2 particles added on the microstructure and mechanical properties of the resulting cast in-situ composites. The sequence of addition of MnO2 particles and magnesium has significant influence on the microstructure and mechanical properties. Increasing processing temperature and time increases the extent of reduction of MnO2 particles, generating more alumina particles as well as releasing more manganese to the matrix alloy. Alumina helps to nucleate finer and sometimes blocky MnAl6 in the matrix of the composite and thereby results in relatively higher ductility and increased strength in the composite as compared to the base alloy of similar composition. Even in the presence of relatively higher porosity of 8 to 9 vol pct, one observes a percent elongation not below 7 to 8 pct, which is considerably higher than those observed in cast Al(Mg)-Al2O3 composite synthesized by externally added alumina particles.  相似文献   

6.
7.
8.
王超  孙春宝  寇珏 《工程科学学报》2018,40(12):1423-1433
系统分析总结了浮选过程中颗粒与气泡的黏附概率模型、EDLVO理论、颗粒-气泡集合体的受力分析、影响因素分析和颗粒-气泡黏附的研究进展.基于接触时间、感应时间的方法和能量势垒的方法,分别从动力学和热力学的角度分析总结了黏附概率模型,并从动力学和热力学的角度解释了颗粒大小、气泡大小、颗粒疏水性、颗粒表面粗糙度和溶液pH对黏附概率的影响,对静态环境和湍流环境中颗粒-气泡集合体进行了受力分析,颗粒和气泡的黏附力有毛细作用力、液体静压力和浮力,静态环境中的脱附力只有重力,但是湍流环境中的脱附力还包括振荡力和离心力.很多研究学者利用先进的仪器和检测手段对颗粒-气泡的黏附做了大量的研究,取得了大量研究成果.颗粒-气泡黏附作用过程相当复杂,试验研究时简化了作用条件,目前理论不能满意解释黏附过程,需要结合实际进行更深层次、更全面的研究.   相似文献   

9.
The removal of solid particles from molten aluminum by flotation was investigated based on theoretical fluid dynamics. The energy spent for stirring the melt in the SNIF process accelerates the agglomeration of small particles into larger particle aggregates which can be removed from the metal by gas bubbles during the short residence time of the melt in the refining unit. Theory suggests that supplementation of thermal agglomeration of the particles with turbulent agglomeration and small gas bubbles are the major factors which can lead to high particle collection efficiencies in molten aluminum.  相似文献   

10.
Hybrid aluminum matrix composites (HAMCs) are capable to meet recent demands of advanced engineering applications due to its tunable mechanical properties and lower cost. Stir casting is one of the prominent and economical method for processing of continuous reinforced HAMCs. In this method, flow pattern is the key factor for distribution of particles in the molten metal. Effective flow pattern can be achieved by optimizing stirring parameters i.e. blade angle, impeller size and stirring speed. However, complete study and optimization of flow is a challenge for research community. Finite element method simulation along with optimization technique is one of the effective combination to guide experimental research. In this paper, computational fluid dynamics has been used to simulate fluid flow during stir casting, whereas optimization of stirring parameters is done by Grey Taguchi method. Optimized parameters have been used for experimental synthesis of HAMCs. Furthermore, optical micrograph and hardness confirms about the uniform dispersion of reinforcements. These results may guide the researchers for the preparation of HAMCs with uniform particle distribution by stir casting route for industrial applications.  相似文献   

11.
对真空感应炉熔炼后浇注的GCr15SiMn轴承钢铸锭进行原位统计分布分析,研究过热度对铸锭C、Si、Mn、Cr元素偏析以及疏松的影响。研究表明:过热度较低时(25 ℃),受溶质元素在凝固前端大量形核以及钢液热对流差等影响,铸锭的凝固末端出现明显的偏析和缩孔,C元素的统计偏析度达7.83%,统计疏松度为1.76%;随着过热度的进一步提高(55 ℃),钢液的热对流有所加强,各元素的偏析情况得到一定的改善,C元素的统计偏析度和疏松度均达到最低,分别为4.06%和1.34%;当过热度较高时(75 ℃和105 ℃),钢液的热对流较为强烈,溶质元素上浮,使得铸锭凝固末端的偏析以及疏松情况又有所恶化。因此,通过铸锭偏析和疏松的定量分析可知,过热度55 ℃为最佳浇注工艺参数。  相似文献   

12.
Slurry pot erosion tester is a simple and inexpensive test rig which can provide a rapid ranking of the erosion resistance for different materials. The fabrication of modified slurry pot erosion tester has been reported here. The present slurry pot erosion tester facilitates to handle large cylindrical and flat samples. It also allows using slurry with variety in its volume, and concentration and particle size of sand. The much needed uniform distribution of solid particles along the vertical section of the slurry is controlled by the speed of the stirrer. In the present investigation, the effect of stirrer speed on the distribution of sand particles inside the slurry pot is studied for variety of slurry. The optimum stirrer speed for uniform distribution of 300 μ sand particles over the vertical cross section in slurry of 10% concentration and 20 l volume comes out to be 850 rpm. The erosion behaviour of mild steel was also studied to ensure suitability of the device for determination of erosive wear.  相似文献   

13.
During centrifugal casting of copper alloys containing graphite particles, both particles and bubbles move under the influence of centrifugal forces and influence the final microstructure, including porosity and the distribution of graphite. The movement of graphite particles and bubbles in the melts of copper alloys, originally containing 7 and 13 vol pct graphite particles and centrifugally cast at 800 and 1900 rpm in horizontal rotating molds, has been examined. Microstructural observations of sections of these centrifugal castings show that the graphite particles are segregated near the inner periphery and the amount of porosity in the graphite-rich zone is higher than the porosity in the graphite-free and transition zones. The intimate association of porosity with graphite particles in the graphite-rich zone was explained on the basis of attachment of graphite particles to bubbles in the melt and the viscosity of the melt, which increases with increasing concentration of graphite particles near the inner periphery of the castings. It was found that the amount of the porosity in the graphite-rich zone increases with volume fraction of graphite particles used in this study; the size of the porosity in the graphite-rich zone also increases with increasing rotational speed of the mold. This suggests that the graphite particles and bubbles were attached to each other in the melt and they did not get separated during centrifugal casting conditions of the present study. The present experiments qualitatively confirm theoretical computations.  相似文献   

14.
A new electromagnetic stirring technique that is driven by hydrodynamic forces was presented. This technique offers the following advantages. First,the stirrer can be immersed in the liquid metal,thereby significantly increasing the penetration depth of the electromagnetic forces and significantly improving the stirring efficiency; thus,this technique is particularly suitable for large-scale liquid metal. Second,under certain conditions,this technique can overcome difficulties that are encountered with traditional stirrers,such as accessing regions that are difficult to reach in working spaces with complex or narrow shapes. This stirrer also has a simpler structure than a traditional stirrer; thus,the design can be easily modified,and no external power supply is required. An experimental prototype was also presented for controlling the fluid flow rate,thereby controlling the electromagnetic force and velocity field of the driven liquid metal. The velocity distribution in a liquid Ga In Sn alloy under fluid-driven electromagnetic stirring was quantitatively measured using ultrasonic Doppler velocimetry( UDV). The primary results show that a remarkable velocity field has been achieved and that fluid-driven electromagnetic stirring is an effective means of stirring liquid metal. Finally,the potential applications of this technique in industry,along with key challenges,were discussed.  相似文献   

15.
Frequently, particles get associated with gas bubbles in a melt and their interaction influences the final distribution of particles and porosity in the casting. An analytical model for the separation of a particle from a bubble in melts containing dispersed particles and bubbles is proposed. During centrifugal casting of alloys containing dispersed particles, both the particles and gas bubbles present in the melt move with the centrifugal forces. Using the force balance between surface tension and net centrifugal forces (centrifugal force minus buoyancy force), the critical rotational speed of the mold for the separation of the particles and the bubbles during centrifugal casting is calculated. The critical rotational speed of the mold to separate the particle from the bubble is lower for a small particle attached to a larger bubble, as compared to the case when a large particle is attached to a smaller bubble. For a given bubble size, the critical rotational speed of the mold to separate the bubble from the particle decreases with increasing particle size. For the specific case of spherical 5-μm radius graphite particles dispersed in copper alloy melt, it was found that even at a low semiapical angle of about 9 deg, the critical rotational speed needs to be around 5000 rpm for a bubble size of 500-μm radius and 0.09-m-diameter mold. The rotational speed decreases to 1000 rpm when the graphite particle radius increases to 100 μm for the same bubble size in copper alloy melt.  相似文献   

16.
The composites reinforced with nanoparticles result in improved strength and ductility while those containing coarser particles of micron size have limited ductility. The present study investigates the outcome of mechanical properties in a composite reinforced simultaneously with coarse and fine particles. High energy milling of manganese dioxide particles with excess of aluminum powder ensures that nanoparticles generated, either of MnO2 or alumina, are mostly separate and surrounded by aluminum particles. The milled powder when added to aluminum alloy melt, the excess aluminum particles will melt leaving behind separate oxide nanoparticles without significant agglomeration. Different amounts of milled powder mix have been stirred into molten aluminum alloy where nanoparticles of MnO2 react with melt to form alumina. The resulting slurry is cast into composites, which also contains coarser (nearly micron size) alumina particles formed by internal oxidation of the melt during processing. The microstructure of the composites shows good distribution of both the size categories of particles without significant clustering. The oxide particles are primarily γ-alumina in a matrix of aluminum-magnesium-manganese alloy containing some iron picked up from the stirrer. These composites fail during tensile test by ductile fracture due to debonding of coarser particles. The presence of nanoparticles along with coarser particles in a composite improves both strength and ductility considerably, presumably due to delay in debonding of coarser particles to higher stress because of reduced mismatch in extension caused by increased strain hardening in presence of nanoparticles in the matrix. The composites containing only coarser oxide particles show limited strength and ductility attributed to early debonding of particles at a relatively lower stress due to larger mismatch in extension between matrix and larger particles. Higher addition of powder mix beyond a limit, however, results in deterioration of mechanical properties, possibly due to clustering of nanoparticles. The present work, however, did not optimize the relative amounts of the different sized particles for achieving maximum ductility.  相似文献   

17.
电磁搅拌作用下水口深度对液面波动的影响   总被引:1,自引:0,他引:1  
张静  杨龙  吴会平 《钢铁》2016,51(3):32-38
 结晶器内液面波动会影响连铸坯的质量,施加电磁搅拌使钢液的液面呈旋转抛物面。电磁搅拌电流过大或拉速过高会造成保护渣卷渣现象,对铸坯质量造成不利的影响。以某钢厂[?]250 mm连铸圆坯结晶器电磁搅拌为研究对象,采用电磁-流体单相耦合的方式及流体体积函数VOF模型,建立描述结晶器电磁搅拌作用下液面波动的数学模型,研究电磁搅拌作用下浸入式水口深度对液面波动的影响。研究表明,通过增大水口深度,能够改善因电磁搅拌强度过大或拉速过大造成的卷渣现象,减小水口附近的液面波动。  相似文献   

18.
根据工业试验结果,分析了结晶器电磁搅拌(M-EMS)对马氏体不锈钢连铸坯的中心疏松、等轴晶率、缩孔及表面质量的影响,并对电磁搅拌对铸坯凝固的影响机理进行了探讨。结果表明:经结晶器电磁搅拌后,当平均磁感应强度B为0.066T时,铸坯中心等轴晶率平均达到了50%,最高达57%,中心疏松均在1.5级以下,中心缩孔90%在1.0级内;铸坯表面质量由使用二冷区电磁搅拌的85%提高到97%,为结晶器电磁搅拌工艺参数的优化及设计提供了一定的依据。  相似文献   

19.
This paper gives an overview of phenomena associated with particles and bubbles in continuously cast steel. During steel processing from deoxidation to solidification the inclusion population undergoes changes with opportunities of removal. Flotation is an important separation mechanism. Inclusion particles may accumulate in the solidifying strand, thus forming enriched bands, which depend on the type of casting machine. Bubbles are created during inert gas injection. They also change in size, can float out, but also form accumulation bands. The interaction of bubbles and particles is discussed. Internal structure that recently has been observed on the inner surface of bubbles will be reviewed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号