首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Problems related to interactions between components is a sign of problems with the software architecture of the system and are often costly to fix. Thus it is very desirable to identify potential architectural problems and track them across releases to see whether some relationships between components are repeatedly change-prone.This paper shows a study of combining two technologies for software architecture: architecture recovery and change dependency analysis based on version control information. More specifically, it describes a reverse engineering method to derive a change architecture from Revision Control System (RCS) change history. It compares this method to other reverse engineering methods used to derive software architectures using other types of data. These techniques are illustrated in a case study on a large commercial system consisting of over 800 KLOC of C, C++, and microcode. The results show identifiable problems with a subset of the components and relationships between them, indicating systemic problems with the underlying architecture.  相似文献   

2.
Many quality improvement activities can be guided by defect analysis. Development defect analysis of software components can be used to guide testing with the goal of focusing on parts of the software that were fault-prone during development. We perform a case study using defect data from a large software product (medical record system). In this study, development defect data help to identify which parts of the software might profit from being tested more and earlier because they were fault-prone during development. Several testing guidelines are proposed to make system test more effective and more efficient.  相似文献   

3.
The authors describe a number of results from a quantitative study of faults and failures in two releases of a major commercial software system. They tested a range of basic software engineering hypotheses relating to: the Pareto principle of distribution of faults and failures; the use of early fault data to predict later fault and failure data; metrics for fault prediction; and benchmarking fault data. For example, we found strong evidence that a small number of modules contain most of the faults discovered in prerelease testing and that a very small number of modules contain most of the faults discovered in operation. We found no evidence to support previous claims relating module size to fault density nor did we find evidence that popular complexity metrics are good predictors of either fault-prone or failure-prone modules. We confirmed that the number of faults discovered in prerelease testing is an order of magnitude greater than the number discovered in 12 months of operational use. The most important result was strong evidence of a counter-intuitive relationship between pre- and postrelease faults; those modules which are the most fault-prone prerelease are among the least fault-prone postrelease, while conversely, the modules which are most fault-prone postrelease are among the least fault-prone prerelease. This observation has serious ramifications for the commonly used fault density measure. Our results provide data-points in building up an empirical picture of the software development process  相似文献   

4.
The architecture of a large software system is widely considered important for such reasons as: providing a common goal to the stakeholders in realising the envisaged system; helping to organise the various development teams; and capturing foundational design decisions early in the development. Studies have shown that defects originating in system architectures can consume twice as much correction effort as that for other defects. Clearly, then, scientific studies on architectural defects are important for their improved treatment and prevention. Previous research has focused on the extent of architectural defects in software systems. For this paper, we were motivated to ask the following two complementary questions in a case study: (i) How do multiple-component defects (MCDs)—which are of architectural importance—differ from other types of defects in terms of (a) complexity and (b) persistence across development phases and releases? and (ii) How do highly MCD-concentrated components (the so called, architectural hotspots) differ from other types of components in terms of their (a) interrelationships and (b) persistence across development phases and releases? Results indicate that MCDs are complex to fix and are persistent across phases and releases. In comparison to a non-MCD, a MCD requires over 20 times more changes to fix it and is 6 to 8 times more likely to cross a phase or a release. These findings have implications for defect detection and correction. Results also show that 20% of the subject system’s components contain over 80% of the MCDs and that these components are 2–3 times more likely to persist across multiple system releases than other components in the system. Such MCD-concentrated components constitute architectural “hotspots” which management can focus upon for preventive maintenance and architectural quality improvement. The findings described are from an empirical study of a large legacy software system of size over 20 million lines of code and age over 17 years.  相似文献   

5.
Software metrics-based quality estimation models can be effective tools for identifying which modules are likely to be fault-prone or not fault-prone. The use of such models prior to system deployment can considerably reduce the likelihood of faults discovered during operations, hence improving system reliability. A software quality classification model is calibrated using metrics from a past release or similar project, and is then applied to modules currently under development. Subsequently, a timely prediction of which modules are likely to have faults can be obtained. However, software quality classification models used in practice may not provide a useful balance between the two misclassification rates, especially when there are very few faulty modules in the system being modeled.This paper presents, in the context of case-based reasoning, two practical classification rules that allow appropriate emphasis on each type of misclassification as per the project requirements. The suggested techniques are especially useful for high-assurance systems where faulty modules are rare. The proposed generalized classification methods emphasize on the costs of misclassifications, and the unbalanced distribution of the faulty program modules. We illustrate the proposed techniques with a case study that consists of software measurements and fault data collected over multiple releases of a large-scale legacy telecommunication system. In addition to investigating the two classification methods, a brief relative comparison of the techniques is also presented. It is indicated that the level of classification accuracy and model-robustness observed for the case study would be beneficial in achieving high software reliability of its subsequent system releases. Similar observations are made from our empirical studies with other case studies.  相似文献   

6.
Empirical validation of software metrics suites to predict fault proneness in object-oriented (OO) components is essential to ensure their practical use in industrial settings. In this paper, we empirically validate three OO metrics suites for their ability to predict software quality in terms of fault-proneness: the Chidamber and Kemerer (CK) metrics, Abreu's Metrics for Object-Oriented Design (MOOD), and Bansiya and Davis' Quality Metrics for Object-Oriented Design (QMOOD). Some CK class metrics have previously been shown to be good predictors of initial OO software quality. However, the other two suites have not been heavily validated except by their original proposers. Here, we explore the ability of these three metrics suites to predict fault-prone classes using defect data for six versions of Rhino, an open-source implementation of JavaScript written in Java. We conclude that the CK and QMOOD suites contain similar components and produce statistical models that are effective in detecting error-prone classes. We also conclude that the class components in the MOOD metrics suite are not good class fault-proneness predictors. Analyzing multivariate binary logistic regression models across six Rhino versions indicates these models may be useful in assessing quality in OO classes produced using modern highly iterative or agile software development processes.  相似文献   

7.
Many evolving mission‐critical systems must have high software reliability. However, it is often difficult to identify fault‐prone modules early enough in a development cycle to guide software enhancement efforts effectively and efficiently. Software quality models can yield timely predictions of membership in the fault‐prone class on a module‐by‐module basis, enabling one to target enhancement techniques. However, it is an open empirical question, “Can a software quality model remain useful over several releases?” Most prior software quality studies have examined only one release of a system, evaluating the model with modules from the same release. We conducted a case study of a large legacy telecommunications system where measurements on one software release were used to build models, and three subsequent releases of the same system were used to evaluate model accuracy. This is a realistic assessment of model accuracy, closely simulating actual use of a software quality model. A module was considered fault‐prone if any of its faults were discovered by customers. These faults are extremely expensive due to consequent loss of service and emergency repair efforts. We found that the model maintained useful accuracy over several releases. These findings are initial empirical evidence that software quality models can remain useful as a system is maintained by a stable software development process.  相似文献   

8.
Society relies on telecommunications to such an extent that telecommunications software must have high reliability. Enhanced measurement for early risk assessment of latent defects (EMERALD) is a joint project of Nortel and Bell Canada for improving the reliability of telecommunications software products. This paper reports a case study of neural-network modeling techniques developed for the EMERALD system. The resulting neural network is currently in the prototype testing phase at Nortel. Neural-network models can be used to identify fault-prone modules for extra attention early in development, and thus reduce the risk of operational problems with those modules. We modeled a subset of modules representing over seven million lines of code from a very large telecommunications software system. The set consisted of those modules reused with changes from the previous release. The dependent variable was membership in the class of fault-prone modules. The independent variables were principal components of nine measures of software design attributes. We compared the neural-network model with a nonparametric discriminant model and found the neural-network model had better predictive accuracy.  相似文献   

9.
With the increasing size and complexity of software in embedded systems, software has now become a primary threat for the reliability. Several mature conventional reliability engineering techniques exist in literature but traditionally these have primarily addressed failures in hardware components and usually assume the availability of a running system. Software architecture analysis methods aim to analyze the quality of software-intensive system early at the software architecture design level and before a system is implemented. We propose a Software Architecture Reliability Analysis Approach (SARAH) that benefits from mature reliability engineering techniques and scenario-based software architecture analysis to provide an early software reliability analysis at the architecture design level. SARAH defines the notion of failure scenario model that is based on the Failure Modes and Effects Analysis method (FMEA) in the reliability engineering domain. The failure scenario model is applied to represent so-called failure scenarios that are utilized to derive fault tree sets (FTS). Fault tree sets are utilized to provide a severity analysis for the overall software architecture and the individual architectural elements. Despite conventional reliability analysis techniques which prioritize failures based on criteria such as safety concerns, in SARAH failure scenarios are prioritized based on severity from the end-user perspective. SARAH results in a failure analysis report that can be utilized to identify architectural tactics for improving the reliability of the software architecture. The approach is illustrated using an industrial case for analyzing reliability of the software architecture of the next release of a Digital TV.  相似文献   

10.
Quantitative properties of modern software systems are often defined as a part of a service-level agreement (SLA) that fixes the maximal load to be submitted to a system and guarantees bounds for the response time or delay. The evaluation of software architectures in order to validate SLAs is a challenging task since the systems tend to be complex, highly dynamic and to some extent unpredictable. Thus, there is a need for fast and abstract techniques to evaluate the performance of modern software architectures based on the information available in the SLAs. The paper presents an efficient approach to compute bounds on the delay of composed systems based on available bounds for the load and the response times of components. The technique can be used by a user of a software architecture to validate SLAs of composed services based on SLAs of the components. It can also be used by a provider of a software architecture to validate whether additional users can be accepted or to compute required service capacities to fulfill an SLA.  相似文献   

11.
A good software architecture facilitates application system development, promotes achievement of functional requirements, and supports system reconfiguration. We present a domain-specific software architecture (DSSA) that we have developed for a large application domain of adaptive intelligent systems (AISs). The DSSA provides: (a) an AIS reference architecture designed to meet the functional requirements shared by applications in this domain, (b) principles for decomposing expertise into highly reusable components, and (c) an application configuration method for selecting relevant components from a library and automatically configuring instances of those components in an instance of the architecture. The AIS reference architecture incorporates features of layered, pipe and filter, and blackboard style architectures. We describe three studies demonstrating the utility of our architecture in the subdomain of mobile office robots and identify software engineering principles embodied in the architecture  相似文献   

12.
A number of hybrid systems have been proposed to combine the advantages of shared nothing and shared everything concepts for computing relational join operations. Most of these proposed systems, however, presented a few analytical results and have produced limited or no implementations on actual multiprocessors. In this paper, we present a parallel join algorithm with load-balancing for a hybrid system that combines both shared-nothing and shared-everything architectures. We derive an analytical model for the join algorithm on this architecture and validate it using both hardware/software simulations and actual experimentations. We study the performance of the join on the hybrid system for a wide range of system parameter values. We conclude that the hybrid system outperforms both shared-nothing and shared-everything architectures  相似文献   

13.
A site broadcasting its local value to all other sites ina fault-prone environment is a fundamental paradigm in constructing reliable distributed systems. Time complexity lower bounds and network connectivity requirements for reliable broadcast protocols in point-to-point communication networks are well known. In this paper, we consider the reliable broadcast problem in distributed systems with broadcast networks (for example, Ethernets) as the basic communication architecture. We show how properties of such network architectures can be used to effectively restrict the externally visible behavior of faulty processors. We use these techniques to derive simple protocols that implement reliable broadcast in only two rounds, independent of the failure upper bounds.  相似文献   

14.
In this paper we present an algebra of actors extended with mechanisms to model crash failures and their detection. We show how this extended algebra of actors can be successfully used to specify distributed software architectures. The main components of a software architecture can be specified following an object-oriented style and then they can be composed using asynchronous message passing or more complex interaction patterns. This formal specification can be used to show that several requirements of a software system are satisfied at the architectural level despite failures. We illustrate this process by means of a case study: the specification of a software architecture for intelligent agents which supports a fault tolerant anonymous interaction protocol.  相似文献   

15.
Many development organizations try to minimize faults in software as a means for improving customer satisfaction. Assuring high software quality often entails time-consuming and costly development processes. A software quality model based on software metrics can be used to guide enhancement efforts by predicting which modules are fault-prone. This paper presents statistical techniques to determine which predictions by a classification tree should be considered uncertain. We conducted a case study of a large legacy telecommunications system. One release was the basis for the training dataset, and the subsequent release was the basis for the evaluation dataset. We built a classification tree using the TREEDISC algorithm, which is based on 2 tests of contingency tables. The model predicted whether a module was likely to have faults discovered by customers, or not, based on software product, process, and execution metrics. We simulated practical use of the model by classifying the modules in the evaluation dataset. The model achieved useful accuracy, in spite of the very small proportion of fault-prone modules in the system. We assessed whether the classes assigned to the leaves were appropriate by statistical tests, and found sizable subsets of modules with uncertain classification. Discovering which modules have uncertain classifications allows sophisticated enhancement strategies to resolve uncertainties. Moreover, TREEDISC is especially well suited to identifying uncertain classifications.  相似文献   

16.
System analysts often use software fault prediction models to identify fault-prone modules during the design phase of the software development life cycle. The models help predict faulty modules based on the software metrics that are input to the models. In this study, we consider 20 types of metrics to develop a model using an extreme learning machine associated with various kernel methods. We evaluate the effectiveness of the mode using a proposed framework based on the cost and efficiency in the testing phases. The evaluation process is carried out by considering case studies for 30 object-oriented software systems. Experimental results demonstrate that the application of a fault prediction model is suitable for projects with the percentage of faulty classes below a certain threshold, which depends on the efficiency of fault identification (low: 47.28%; median: 39.24%; high: 25.72%). We consider nine feature selection techniques to remove the irrelevant metrics and to select the best set of source code metrics for fault prediction.  相似文献   

17.
It is essential to predict customer-perceived software availability during software development and determine when to release the software to maintain a balance among time-to-market, development cost and software quality. This paper presents methods and procedures to predict software failure rates from a user perspective in system test phases and to reverse-engineer in order to estimate software release time for given availability targets. Software reliability analysis is conducted based on non-homogenous Poisson process models. Software system test data of current release are used to estimate the number of residual faults by the end of system tests and data of previous releases or similar products (including system test data, post-system test data and field failure data) provide a means to predict a user-perceived average failure rate of a fault. Software system availability can be predicted from these estimates. Both execution and calendar times are considered. A software resource utilization model is developed to transfer one testing time to another. A telecommunications application illustrates how to calculate the failure rate and testing time to meet the software availability requirements.  相似文献   

18.
ContextSoftware architectures should be evaluated during the early stages of software development in order to verify whether the non-functional requirements (NFRs) of the product can be fulfilled. This activity is even more crucial in software product line (SPL) development, since it is also necessary to identify whether the NFRs of a particular product can be achieved by exercising the variation mechanisms provided by the product line architecture or whether additional transformations are required. These issues have motivated us to propose QuaDAI, a method for the derivation, evaluation and improvement of software architectures in model-driven SPL development.ObjectiveWe present in this paper the results of a family of four experiments carried out to empirically validate the evaluation and improvement strategy of QuaDAI.MethodThe family of experiments was carried out by 92 participants: Computer Science Master’s and undergraduate students from Spain and Italy. The goal was to compare the effectiveness, efficiency, perceived ease of use, perceived usefulness and intention to use with regard to participants using the evaluation and improvement strategy of QuaDAI as opposed to the Architecture Tradeoff Analysis Method (ATAM).ResultsThe main result was that the participants produced their best results when applying QuaDAI, signifying that the participants obtained architectures with better values for the NFRs faster, and that they found the method easier to use, more useful and more likely to be used. The results of the meta-analysis carried out to aggregate the results obtained in the individual experiments also confirmed these results.ConclusionsThe results support the hypothesis that QuaDAI would achieve better results than ATAM in the experiments and that QuaDAI can be considered as a promising approach with which to perform architectural evaluations that occur after the product architecture derivation in model-driven SPL development processes when carried out by novice software evaluators.  相似文献   

19.
Analyzing software measurement data with clustering techniques   总被引:1,自引:0,他引:1  
For software quality estimation, software development practitioners typically construct quality-classification or fault prediction models using software metrics and fault data from a previous system release or a similar software project. Engineers then use these models to predict the fault proneness of software modules in development. Software quality estimation using supervised-learning approaches is difficult without software fault measurement data from similar projects or earlier system releases. Cluster analysis with expert input is a viable unsupervised-learning solution for predicting software modules' fault proneness and potential noisy modules. Data analysts and software engineering experts can collaborate more closely to construct and collect more informative software metrics.  相似文献   

20.
Previous research has provided evidence that a combination of static code metrics and software history metrics can be used to predict with surprising success which files in the next release of a large system will have the largest numbers of defects. In contrast, very little research exists to indicate whether information about individual developers can profitably be used to improve predictions. We investigate whether files in a large system that are modified by an individual developer consistently contain either more or fewer faults than the average of all files in the system. The goal of the investigation is to determine whether information about which particular developer modified a file is able to improve defect predictions. We also extend earlier research evaluating use of counts of the number of developers who modified a file as predictors of the file’s future faultiness. We analyze change reports filed for three large systems, each containing 18 releases, with a combined total of nearly 4 million LOC and over 11,000 files. A buggy file ratio is defined for programmers, measuring the proportion of faulty files in Release R out of all files modified by the programmer in Release R-1. We assess the consistency of the buggy file ratio across releases for individual programmers both visually and within the context of a fault prediction model. Buggy file ratios for individual programmers often varied widely across all the releases that they participated in. A prediction model that takes account of the history of faulty files that were changed by individual developers shows improvement over the standard negative binomial model of less than 0.13% according to one measure, and no improvement at all according to another measure. In contrast, augmenting a standard model with counts of cumulative developers changing files in prior releases produced up to a 2% improvement in the percentage of faults detected in the top 20% of predicted faulty files. The cumulative number of developers interacting with a file can be a useful variable for defect prediction. However, the study indicates that adding information to a model about which particular developer modified a file is not likely to improve defect predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号