首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of manganese oxide coated zeolite (MOCZ) to adsorb copper and lead ions in single- (non-competitive) and binary- (competitive) component sorption systems was studied in fixed-bed column. The experiments were applied to quantify particle size, bed length, influent flow rate and influent metal concentration on breakthrough time during the removal of copper and lead ions from aqueous solutions using MOCZ column. Results of fixed-bed adsorption showed that the breakthrough time appeared to increase with increase of the bed length and decrease of influent metal concentration, but decreased with increase of the flow rate. The Thomas model was applied to adsorption of copper and lead ions at bed length, MOCZ particle size, different flow rate and different initial concentration to predict the breakthrough curves and to determine the characteristic parameters of the column useful for process design. The model was found suitable for describing the adsorption process of the dynamic behavior of the MOCZ column. The total adsorbed quantities, equilibrium uptakes and total removal percents of Cu(II) and Pb(II) related to the effluent volumes were determined by evaluating the breakthrough curves obtained at different conditions. The results suggested that MOCZ could be used as an adsorbent for an efficient removal of copper and lead ions from aqueous solution. The removal of metal ion was decreased when other additional heavy metal ion was added, but the total saturation capacity of MOCZ for copper and lead ions was not significantly decreased. This competitive adsorption also showed that adsorption of lead ions was decreased insignificantly when copper ions was added to the influent, whereas a dramatic decrease was observed on the adsorption of copper ions by the presence of lead ions. The removal of copper and lead ion by MOCZ columns followed the descending order: Pb(II) > Cu(II). The adsorbed copper and lead ions were easily desorbed from MOCZ with 0.5 mol l(-1) HNO3 solution.  相似文献   

2.
The dynamic removal of copper by Purolite C100-MB cation exchange resin was studied in packed bed columns. The values of column parameters are predicted as a function of flow rate and bed height. Batch experiments were performed using the Na-form resin to determine equilibrium and kinetics of copper removal. The uptake of Cu(II) by this resin follows first-order kinetics. The effect of stirring speed and temperature on the removal kinetics was studied. The activation energy for the exchange reaction is 13.58kJmol(-1). The equilibrium data obtained in this study have been found to fit both the Langmuir and Freundlich isotherm equations. A series of column tests were performed to determine the breakthrough curves with varying bed heights and flow rates. To predict the breakthrough curves and to determine the characteristic parameters of the column useful for process design, four kinetic models; Bohart-Adams, Bed Depth Service Time (BDST), Clark and Wolborska models are applied to experimental data. All models are found suitable for describing the whole or a definite part of the dynamic behavior of the column with respect to flow rate and bed height. The simulation of the whole breakthrough curve is effective with the Bohart-Adams and the Clark models, but the Bohart-Adams model is better. The breakthrough is best predicted by the Wolborska model. The breakthrough data gave a good fit to the BDST model, resulting in a bed exchange capacity very close to the value determined in the batch process.  相似文献   

3.
The kinetics of zinc and lead ions removal by modified zeolite-clinoptilolite has been investigated. The rate of the ion exchange process for lead ions is faster than for zinc ions, as well as the time needed to reach the equilibrium. The ion exchange capacity of zeolite of lead ions is doubly higher than that of zinc ions. Diffusion models according to the Vermeulen's approximation, the parabolic diffusion model and the homogeneous diffusion model have been tested with the experimental data of ion exchange for zinc and lead. For both systems examined, the best fit of the models proposed with the experimental data was shown by the Vermeulen's approximation and the homogeneous diffusion model with t-->t(infinity). The diffusion coefficients are calculated from kinetic models of lead ions they are of the order of 10(-6)cm(2)/min, constant for all examined initial concentrations and not dependent on time. The diffusion coefficients in the system of zinc ions is of the order of 10(-8)cm(2)/min, also independent of initial concentrations, but decreasing with time from the beginning of ion exchange to the equilibrium.  相似文献   

4.
A gel resin containing sulfonate groups (Dowex 50W) was investigated for its sorption properties towards copper, zinc, nickel, cadmium and lead metal ions. The use of selective ion exchange to recover metals from aqueous solution has been studied. The ion exchange behavior of five metals on Dowex 50W, depending on pH, temperature, and contact time and adsorbate amount was studied. Experimental measurements have been made on the batch sorption of toxic metals from aqueous solutions using cation exchanger Dowex 50W. The maximum recoveries (about 97%) Cu(2+), Zn(2+), Ni(2+), Cd(2+) and (about 80%) Pb(2+) were found at pH ranges 8-9. The amount of sorbed metal ion was calculated as 4.1, 4.6, 4.7, 4.8, and 4.7mequiv./gram dry resin for Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+), respectively. The precision of the method was examined at under optimum conditions. Selectivity increased in the series: Pb>Cd>Cu>Zn>Ni. It has been observed that, selectivity of the -SO(3)H group of the resin increases with atomic number, valance, degree of ionization of the exchanged metals. The equilibrium ion exchange capacity of resin for metal ions was measured and explored by using Freundlich and Langmuir isotherms. Langmuir type sorption isotherm was suitable for equilibrium studies.  相似文献   

5.
Nanocrystalline (1.7 ± 0.3 nm) zinc sulfide with a specific surface area up to 360 m(2) g(-1) was prepared from the thermal decomposition of a single-source precursor, zinc ethylxanthate. Zinc ethylxanthate decomposes to cubic zinc sulfide upon exposure to temperatures greater than or equal to 125 °C. The resulting zinc sulfide was tested as a water impurity extractant. The target impurities used in this study were As(5+), As(3+), and Pb(2+). The reaction of the nanocrystalline ZnS with Pb(2+) proceeds as a replacement reaction where solid PbS is formed and Zn(2+) is released into the aqueous system. Removal of lead to a level of less than two parts per billion is achievable. The results of a detailed kinetics experiment between the ZnS and Pb(2+) are included in this study. Unlike the instance of lead, both As(5+) and As(3+) adsorb on the surface of the ZnS extractant as opposed to an ion-exchange process. An uptake capacity of > 25 mg g(-1) for the removal of As(5+) is possible. The uptake of As(3+) appears to proceed by a slower process than that of the As(5+) with a capacity of nearly 20 mg g(-1). The nanocrystalline zinc sulfide was extremely successful for the removal of arsenic and lead from simulated oil sand tailing pond water.  相似文献   

6.
In the present work, the abilities of native sugar beet pulp (SBP) and fly ash (FA) to remove copper (Cu(2+)) and zinc (Zn(2+)) ions from aqueous solutions were compared. The SBP and FA, an industrial by-product and solid waste of sugar industry, were used for the removal of copper and zinc from aqueous water. Batch adsorption experiments were performed in order to evaluate the removal efficiency of SBP and lignite-based FA. The effect of various operating variables, i.e. initial pH, adsorbent dose, initial metal ion concentration, and time on adsorption of copper and zinc onto the SBP and FA, has been studied. The sorption process was relatively fast and equilibrium was reached after about 60 min of contact. As much as 60-97% removal of copper and zinc for SBP and FA are possible in about 60 min, respectively, under the batch test conditions. Uptake showed a pH-dependent profile. The overall uptake for the SBP is at a maximum at pH 5.5 and gives up to 30.9 mg g(-1) for copper and at pH 6.0 and gives 35.6 mg g(-1) for zinc for SBP, which seems to be removed exclusively by ion exchange and physical sorption. Maximum adsorption of copper and zinc occurred 7.0 and 7.84 mg g(-1) at a pH value of 5.0 and 4.0 for FA, respectively. A dose of 8 g l(-1) of SBP and 8 g l(-1) FA were sufficient for the optimum removal of both the metal ions. The sorption data were represented by the Freundlich for SBP and the Langmuir and Freundlich for FA. The sorption data were better represented by the Langmuir isotherm than by the Freundlich one for FA in the adsorption of zinc ion, suggesting that the monolayer sorption, mainly due to ion exchange. The presence of low ionic strength or low concentration of Na and Cl ions does not have a significant effect on the adsorption of these metals by SBP and FA. The SBP and FA are shown to be effective metal adsorbents for these two metals.  相似文献   

7.
The removal performance and the selectivity sequence of mixed metal ions (Co(2+), Cr(3+), Cu(2+), Zn(2+) and Ni(2+)) in aqueous solution were investigated by adsorption process on pure and chamfered-edge zeolite 4A prepared from coal fly ash (CFA), commercial grade zeolite 4A and the residual products recycled from CFA. The pure zeolite 4A (prepared from CFA) was synthesized under a novel temperature step-change method with reduced synthesis time. Batch method was employed to study the influential parameters such as initial metal ions concentration, adsorbent dose, contact time and initial pH of the solution on the adsorption process. The experimental data were well fitted by the pseudo-second-order kinetics model (for Co(2+), Cr(3+), Cu(2+) and Zn(2+) ions) and the pseudo-first-order kinetics model (for Ni(2+) ions). The equilibrium data were well fitted by the Langmuir model and showed the affinity order: Cu(2+) > Cr(3+) > Zn(2+) > Co(2+) > Ni(2+) (CFA prepared and commercial grade zeolite 4A). The adsorption process was found to be pH and concentration dependent. The sorption rate and sorption capacity of metal ions could be significantly improved by increasing pH value. The removal mechanism of metal ions was by adsorption and ion exchange processes. Compared to commercial grade zeolite 4A, the CFA prepared adsorbents could be alternative materials for the treatment of wastewater.  相似文献   

8.
This paper reports the results of the study on the performance of low-cost adsorbent such as raw rice husk (RRH) and phosphate treated rice husk (PRH) in removing the heavy metals such as lead, copper, zinc and manganese. The adsorbent materials adopted were found to be an efficient media for the removal of heavy metals in continuous mode using fixed bed column. The column studies were conducted with 10 mg/l of individual and combined metal solution with a flow rate of 20 ml/min with different bed depths such as 10, 20 and 30 cm. The breakthrough time was also found to increase from 1.3 to 3.5 h for Pb(II), 4.0 to 9.0 h for Cu(II), 12.5 to 25.4h for Zn(II) and 3.0 to 11.3 h for Mn(II) with increase in bed height from 10 to 30 cm for PRH. Different column design parameters like depth of exchange zone, adsorption rate, adsorption capacity, etc. were calculated. It is found that the adsorption capacity and adsorption rate constant were increased and the minimum column bed depth required was reduced when the rice husk is treated with phosphate, when compared with that of RRH.  相似文献   

9.
We report the synthesis of hydroxyapatite/polyacrylamide (HAp/PAAm) composite hydrogels with various HAp contents by free radical polymerization and their removal capability of Pb(2+) ions in aqueous solutions with controlled initial Pb(2+) ion concentrations and pH values of 2-5. The swelling ratio of the composite gels in aqueous solutions decreases with increasing the HAp content in the gels. The composite gel with higher HAp content exhibits the higher removal capacity of Pb(2+) ions owing to the higher adsorption sites for Pb(2+) ions, but shows the slower removal rate of Pb(2+) ions due to the lower degree of swelling. The removal mechanism of Pb(2+) ion is very sensitive to the pH value in aqueous solution, although the removed amount of Pb(2+) ion is nearly same, regardless of pH values of 2-5. The removal mechanism, the dissolution of HAp in the composite gel and subsequent precipitation of hydroxypyromorphite (HPy), is dominant at lower pH 2-3, whereas the mechanism, the adsorption of Pb(2+) ions on the composite gel and following cation exchange reaction between Pb(2+) ions adsorbed and Ca(2+) of HAp, is dominant at higher pH 4-5. The equilibrium removal process of Pb(2+) ions by the composite gels at pH 5 is described well with the Langmuir isotherm model. The equilibrium removal capacities of the composite gels with 30, 50, and 70 wt.% HAp contents are evaluated to be 123, 178, and 209 mg/g, respectively.  相似文献   

10.
The electroremediation experiments were conducted on artificially polluted soils by introducing a single metallic contaminant (Pb, Zn and Cu) and multiple metallic contaminants (Pb+Zn+Cu). Based on sequential extraction results, it was observed that the removal efficiencies of lead, zinc and copper vary depending on types of contamination. When the soil was contaminated only by lead, the removal efficiency was found to be 48%. However, the removal efficiency of lead decreased to 32% when the soil was contaminated by the combination of lead, zinc and copper. Similar results were observed for zinc and copper. The corresponding removal efficiency values for zinc and copper were 92% and 37%, and 34% and 31%, respectively. Effects of electrode geometry on the removal efficiency of metals were investigated by constructing a multiple anode arrangement. In this arrangement, the electrokinetic unit consists of three cylinders, which lie one inside the other, and the soil was placed in the middle cylinder. The central cylinder was the cathode well and the outer cylinder was the anode well, where eight identical anode electrodes were placed in octagonal with respect to the cathode electrode. By using this electrode arrangement in removal of metals from the soil contaminated with the combination of three metals (Pb+Zn+Cu), the removal efficiencies of lead, zinc and copper were found to be 29%, 18% and 18%, respectively. As it can be seen, these numerical values are much lower than the values that were obtained when the traditional two-plate electrode arrangement used in the electroremediation experiments (32%, 37% and 31%).  相似文献   

11.
Effluent discharged from the chromium electroplating industry contains a large number of metals, including chromium, copper, nickel, zinc, manganese and lead. The ion exchange process is an alternative technique for application in the treatment of industrial wastewater containing heavy metals and indeed it has proven to be very promising in the removal and recovery of valuable species. The main objective of the present work is to evaluate the performance of commercial ion exchange resins for removing chromium trivalent from industrial effluents, and for this purpose two resins were tested: a chelating exchange resin (Diaion CR11) and a weak cationic resin (Amberlite IRC86). In order to evaluate the sorption capacity of the resins some equilibrium experiments were carried out, being the temperature and pH the main variables considered. The chromium solutions employed in the experiments were synthetic solutions and industrial effluents. In addition, a transient test was also performed as an attempt to understand the kinetic behaviour of the process.  相似文献   

12.
Sorption of Cd(2+), Cr(3+), Cu(2+), Ni(2+), Pb(2+) and Zn(2+) onto a carboxyl groups-rich material prepared from lemon was investigated in batch systems. The results revealed that the sorption is highly pH dependent. Sorption kinetic data indicated that the equilibrium was achieved in the range of 30-240 min for different metal ions and sorption kinetics followed the pseudo-second-order model for all metals studied. Relative sorption rate of various metal cations was found to be in the general order of Ni(2+)>Cd(2+)>Cu(2+)>Pb(2+)>Zn(2+)>Cr(3+). The binding characteristics of the sorbent for heavy metal ions were analyzed under various conditions and isotherm data was accurately fitted to the Langmuir equation. The metal binding capacity order calculated from Langmuir isotherm was Pb(2+)>Cu(2+)>Ni(2+)>Cd(2+)>Zn(2+)>Cr(3+). The mean free energy of metal sorption process calculated from Dubinin-Radushkevich parameter and the Polanyi potential was found to be in the range of 8-11 kJ mol(-1) for the metals studied showing that the main mechanism governing the sorption process seems to be ion exchange. The basic thermodynamic parameters of metals ion sorption process were calculated by using the Langmuir constants obtained from equilibration study. The DeltaG degrees and DeltaH degrees values for metals ion sorption on the lemon sorbent showed the process to be spontaneous and exothermic in nature. Relatively low DeltaH degrees values revealed that physical adsorption significantly contributed to the mechanism.  相似文献   

13.
In this study, removal of Cu(2+), Cd(2+) and Pb(2+) from aqueous solutions by adsorption onto pyrite and synthetic iron sulphide (SIS) was investigated as a function of pH, contact time, adsorbent dosage, initial metal concentration and temperature. It has been determined that the adsorption of metal ions onto both adsorbents is pH dependent and the adsorption capacities increase with the increasing temperature. The mechanisms governing the metal removal processes were determined as chemical precipitation at low pH (<3) due to H(2)S generation and adsorption at high pH (in the range of 3-6). The metal adsorption yields also increased with the increasing adsorbent dosage and contact time and reached to equilibrium for both adsorbents. The Cu(2+), Cd(2+) and Pb(2+) adsorption capacities of both adsorbents decrease in the order of Pb(2+)>Cu(2+)>Cd(2+). Except for cadmium, little fraction of copper and lead in the solid adsorption residues was desorbed in acidic media.  相似文献   

14.
Removal of trace amounts of heavy metals can be achieved by means of selective ion-exchange processes. The newly developed resins offered a high resin capacity and faster sorption kinetics for the metal ions such as Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) ions. In the present study, the removal of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) ions from aqueous solutions was investigated. Experimental investigations were undertaken using the ion-exchange resin Lewatit CNP 80 (weakly acidic) and were compared with Lewatit TP 207 (weakly acidic and chelating). The optimum pH range for the ion-exchange of the above mentioned metal ions on Lewatit CNP 80 and Lewatit TP 207 were 7.0-9.0 and 4.5-5.5, respectively. The influence of pH, contact time, metal concentration and amount of ion-exchanger on the removal process was investigated. For investigations of the exchange equilibrium, different amounts of resin were contacted with a fixed volume of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) ion containing solution. The obtained sorption affinity sequence in the presented work was Ni(2+)>Cu(2+)>Cd(2+)>Zn(2+)>Pb(2+). The metal ion concentrations were measured by AAS methods. The distribution coefficient values for metal ions of 10(-3)M initial concentration at 0.1mol/L ionic strength show that the Lewatit CNP 80 was more selective for Ni(2+), Cu(2+) than it was for Cd(2+), Zn(2+) and Pb(2+). Langmuir isotherm was applicable to the ion-exchange process and its contents were calculated. The uptake of metal ions by the ion-exchange resins was reversible and thus has good potential for the removal of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) from aqueous solutions. The amount of sorbed metal ion per gram dry were calculated as 4.1, 4.6, 4.7, 4.8, and 4.7mequiv./g dry resin for Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+), respectively. Selectivity increased in the series: Cd(2+)>Pb(2+)>Cu(2+)>Ni(2+)>Zn(2+). The results obtained showed that Lewatit CNP 80 weakly acidic resin had shown better performance than Lewatit TP 207 resin for the removal of metals. The change of the ionic strength of the solution exerts a slight influence on the removal of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+). The presence of low ionic strength or low concentration of NaNO(3) does not have a significant effect on the ion-exchange of these metals by the resins. We conclude that Lewatit CNP 80 can be used for the efficient removal of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) from aqueous solutions.  相似文献   

15.
Factors influencing the removal of divalent cations by hydroxyapatite   总被引:3,自引:0,他引:3  
The effect of pH, contact time, initial metal concentration and presence of common competing cations, on hydroxyapatite (HAP) sorption properties towards Pb(2+), Cd(2+), Zn(2+), and Sr(2+) ions was studied and compared using a batch technique. The results strongly indicated the difference between the sorption mechanism of Pb(2+) and other investigated cations: the removal of Pb(2+) was pH-independent and almost complete in the entire pH range (3-12), while the sorption of Cd(2+), Zn(2+) and Sr(2+) generally increased with an increase of pH; the contact time required for attaining equilibrium was 30 min for Pb(2+) versus 24h needed for other cations; maximum sorption capacity of HAP sample was found to be an order of magnitude higher for Pb(2+) (3.263 mmol/g), than for Cd(2+) (0.601 mmol/g), Zn(2+) (0.574 mmol/g) and Sr(2+) (0.257 mmol/g); the selectivity of HAP was found to decrease in the order Pb(2+)>Cd(2+)>Zn(2+)>Sr(2+) while a decrease of pH(PZC), in respect to the value obtained in inert electrolyte, followed the order Cd(2+)>Zn(2+)>Pb(2+)>Sr(2+); neither of investigated competing cations (Ca(2+), Mg(2+), Na(+) and K(+)) influenced Pb(2+) immobilization whereas the sorption of other cations was reduced in the presence of Ca(2+), in the order Sr(2+)>Cd(2+)>or=Zn(2+). The pseudo-second order kinetic model and Langmuir isotherm have been proposed for modeling kinetic and equilibrium data, respectively. The sorption of all examined metals was followed by Ca(2+) release from the HAP crystal lattice and pH decrease. The ion exchange and specific cation sorption mechanisms were anticipated for Cd(2+), Zn(2+) and Sr(2+), while dissolution of HAP followed by precipitation of hydroxypyromorphite (Pb(10)(PO(4))(6)(OH)(2)) was found to be the main operating mechanism for Pb(2+) immobilization by HAP, with the contribution of specific cation sorption.  相似文献   

16.
This paper deals with removal of copper ions from solution by raw rice husk (RRH) and expanding rice husk (ERH). Different column design parameters like bed depth, flow rate and initial copper concentration were investigated. It was found that the equilibrium uptake (q(eq(exp))) of the ERH and RRH increased with increase in initial copper concentration but decreased with increase in flow rate and bed depth, respectively. The higher adsorption capacity and longer breakthrough time were observed for ERH in comparison with RRH, under the same conditions. Compared to coconut-shell activated carbon (C-AC), ERH was also found more effective in removing Cu(2+). 0.01 mol L(-1) HCl solution was used for desorption of column which was prior to absorb copper ion, and 0.01 mol L(-1) NaOH solution was used for re-activation. Column regeneration and reuse studies were conducted for adsorption-desorption cycle.  相似文献   

17.
Zeolite A was chemically synthesized and evaluated, as inorganic ion exchange material, for the removal of cesium and strontium ions from aqueous solutions in both batch and fixed bed column operations. Batch experiments were carried out as a function of pH, initial ion concentration and temperature. Simple kinetic and thermodynamic models have been applied to the rate and isotherm sorption data and the relevant kinetic and thermodynamic parameters were determined from the graphical presentation of these models. Breakthrough data were determined in a fixed bed column at room temperature (298 K) under the effect of various process parameters like bed depth, flow rate and initial ion concentration. The results showed that the total metal ion uptake and the overall bed capacity decreased with increasing flow rate and increased with increasing initial ion concentrations and bed depth. The dynamics of the ion exchange process was modeled by bed depth service time (BDST) model. The sorption rate constants (K) were found to increase with increase in flow rate indicating that the overall system kinetics was dominated by external mass transfer in the initial part of the sorption process in the column.  相似文献   

18.
Based on energetic analysis, a novel approach for copper electrodeposition via cathodic reduction in microbial fuel cells (MFCs) was proposed for the removal of copper and recovery of copper solids as metal copper and/or Cu(2)O in a cathode with simultaneous electricity generation with organic matter. This was examined by using dual-chamber MFCs (chamber volume, 1L) with different concentrations of CuSO(4) solution (50.3 ± 5.8, 183.3 ± 0.4, 482.4 ± 9.6, 1007.9 ± 52.0 and 6412.5 ± 26.7 mg Cu(2+)/L) as catholyte at pH 4.7, and different resistors (0, 15, 390 and 1000 Ω) as external load. With glucose as a substrate and anaerobic sludge as an inoculum, the maximum power density generated was 339 mW/m(3) at an initial 6412.5 ± 26.7 mg Cu(2+)/L concentration. High Cu(2+) removal efficiency (>99%) and final Cu(2+) concentration below the USA EPA maximum contaminant level (MCL) for drinking water (1.3mg/L) was observed at an initial 196.2 ± 0.4 mg Cu(2+)/L concentration with an external resistor of 15 Ω, or without an external resistor. X-ray diffraction analysis confirmed that Cu(2+) was reduced to cuprous oxide (Cu(2)O) and metal copper (Cu) on the cathodes. Non-reduced brochantite precipitates were observed as major copper precipitates in the MFC with a high initial Cu(2+) concentration (0.1M) but not in the others. The sustainability of high Cu(2+) removal (>96%) by MFC was further examined by fed-batch mode for eight cycles.  相似文献   

19.
本文利用离子交换法将沸石与具有抗菌性能的锌铜离子合成双组分抗菌沸石,研究了反应时间、温度、交换的金属溶液的浓度和沸石与金属离子溶液的固液比对抗菌剂载金属含量及抗菌性能的影响,同时也比较了单金属组分沸石与双金属沸石抗菌性能的差异。实验表明,制备锌铜双组分抗菌沸石的最佳工艺条件为:反应时间2h,温度90℃,沸石质量与金属离子溶液体积比1:10,锌铜含量相差最少则锌铜离子浓度比为1:1。  相似文献   

20.
This work investigates the effects of flow rate (5-15 Bed Volumes/h), particle size (0.8-1.7 mm), concentration (0.005-0.02 N) and Na(+)-enrichment of natural clinoptilolite on the removal efficiency of Pb2+, Cu2+, Fe3+ and Cr3+ in aqueous solutions. Ion exchange is performed in an upflow fixed bed reactor. The removal efficiency is increased with decreasing flow rate, particle size and concentration and is improved by a factor of 2-10, depending on the specific metal. The modification of the natural sample is favorable, leading to an increase of removal efficiency by 32-100%. For the experimental conditions examined, removal efficiency order is the following: Pb2+ > Cr3+ > Fe3+ > or = Cu2+. Finally, the operation is influenced by the studied parameters, following the order: concentration > volumetric flow > rate > particle size > modification of the material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号