首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chun-Huei Tsau   《Intermetallics》2001,9(12):1085-1087
The melt-spun Ni–25Al–xFe ribbons were used to investigate the rapidly solidified effect on hardness and microstructures. The results revealed that the phases existing in these ribbons were the same as the ingot-casting specimens, but the interdendritic regions were suppressed by rapid solidification, and the volume fraction of γ phase decreased. In addition, the rapidly solidified technique was found to increase the hardness significantly. The maximum increment of 250 DPH (from HV400 to HV650) was found in the Ni–25Al–30Fe because of the effects of the suppression of the second phase formation and the size refinement.  相似文献   

2.
J. Lapin   《Intermetallics》2006,14(12):1417-1427
The effect of directional solidification and heat treatments on the microstructure and mechanical properties of intermetallic Ni–21.29Al–7.04Cr–1.46Ta–0.64Mo–0.57Zr (at.%) alloy was studied. Increasing growth rate is found to decrease primary dendrite arm spacing and to increase volume fraction of β(NiAl)-based dendrites and low melting point γ′(Ni3Al)/Ni5Zr eutectic. Room-temperature tensile yield strength and ultimate tensile strength increase and plastic elongation to fracture decreases with the increasing growth rate. Two types of heat treatments of directionally solidified (DS) specimens including two-step ageing at temperatures of 1273 and 1123 K and two-step solution annealing at 1373 and 1493 K were performed. Ageing at 1273 and 1123 K decreases volume fractions of the dendrites and eutectic regions and leads to a coarsening of spherical -Cr and needle-like γ′ precipitates within the β-phase. Annealing at 1373 K for 100 h is shown to be sufficiently long to completely dissolve the eutectic regions. Compressive yield strength increases with increasing temperature reaching a peak value at about 1023 K and then decreases at higher temperatures. Minimum creep rate is found to depend strongly on the applied stress and temperature according to a power law. The power law stress exponent n is determined to be 5.1 and apparent activation for creep Qa is measured to be 326 kJ/mol.  相似文献   

3.
Microstructure and mechanical properties were investigated in a directionally solidified (DS) Ni–21.7Al–7.5Cr–6.5Ti (at.%) alloy. The dendrites of the as-grown alloy were composed of β(B2)-matrix (NiAl), coarse γ′(L12)-particles (Ni3Al), fine γ′-needles and spherical α(A2)-precipitates (Cr-based solid solution). The majority of fine γ′-precipitates was found to be twinned. The interdendritic region contained γ(A1)-matrix (Ni-based solid solution) separating ordered domains of γ′-phase and fine lath-shaped α-precipitates. Ageing in the temperature range 973–1373 K decreased the volume fraction of dendrites from about 50 vol.% measured in the as-grown material to about 38 vol.% in the material aged at 1373 K for 300 h. During ageing in the temperature range 973–1273 K the γ-phase transformed to the γ′-phase in the interdendritic region. This transformation was connected with precipitation of lath-shaped α-precipitates. Ageing at higher temperatures of 1373 and 1473 K resulted in stabilisation of the γ-phase and precipitation of spherical γ′-particles in the interdendritic region. Ageing at 973 K significantly increased the microhardness, hardness and decreased room-temperature tensile ductility. Neither ageing nor finer dendritic microstructure were found to be effective in increasing the ductility of the alloy. The measured tensile ductility up to 1.1% can be attributed to the effect of extrinsic toughening mechanisms operating in the β-phase such as blunting and bridging of cracks by the α- and γ′-precipitates.  相似文献   

4.
The morphology and crystallography of martensite either formed by cooling to subzero temperatures (thermal effect) or by compression deformation were compared for different austenite grain sizes of Fe–29% Ni–2% Mn alloy by transmission electron microscope (TEM). TEM observations revealed both and ′ martensite formation within large grained austenite phases by thermal effect whereas only ′ martensite formation was observed in small grained austenite phases. On the other hand, compression deformation effect caused only ′ martensite formation in both small and large grained austenite phases of Fe–29% Ni–2% Mn alloy. Thermally induced ′ martensite exhibited a lenticular morphology with partial twinnings that are peculiar to this kind of morphology. The crystallographic orientation relationship between austenite and thermally induced ′ lenticular martensites was found to be as Kurdjumov–Sachs (K–S) type relationship.  相似文献   

5.
Microstructure and orientation distribution of two phase Ni–Al(β)/Ni3Al(γ′) alloys obtained by thermomechanical processing were examined using electron back-scatter diffraction pattern technique. Cylindrical specimens were hot-compressed in the β phase region and subsequently annealed in the (β/γ′) two phase region. After the hot deformation, equiaxed β grains surrounded by high angle boundaries were homogeneously formed due to dynamic recrystallisation under adequate condition. Moreover, strong 1 1 1 fibre texture parallel to the compressive axis developed in the β phase because of the lattice rotation during hot deformation. After annealing in the two phase region, γ′ phase transformed from β phase with 1 1 1β fibre texture satisfying the Kurdjumov–Sachs relationship and resulting in the formation of 1 1 0γ′ fibre texture. Film-shaped γ′ phase preferentially often precipitated along the β grain boundaries and a large number of (β/γ′) boundaries were partially coherent. This thermomechanical processing was effective in controlling the crystallography of γ′ along the β grain boundaries.  相似文献   

6.
Phase relations in the ternary system Al–Ni–Ti have been experimentally established for the isothermal section at 900°C for concentrations 0.1xAl0.7. The investigation is based on X-ray powder diffraction, metallography, SEM and EMPA-techniques on about 40 ternary alloys, prepared by argon-arc or vacuum-electron beam melting of proper elemental powder blends. The existence of four ternary compounds, τ1 to τ4, is confirmed, however, in contrast to earlier investigations at significantly different compositions and with different shape of the homogeneity regions. This is particularly true for the phase regions of τ3-Al3NiTi2 with the MgZn2-type structure ranging from Al30Ni28Ti42 (composition lowest in Al) to Al50Ni16Ti34 (composition richest in Al) and for τ2-Al2NiTi. The complex atom site substitution mechanism in τ3 changing from Ti/Al exchange at Al-poor compositions towards Ni/Al replacement for the Al-rich part was monitored in detail by quantitative X-ray powder diffraction techniques (Rietveld analyses). In contrast to earlier reports, claiming a two-phase region Ni{AlxTi1-x}23, we observed two closely adjoining three-phase equilibria: 2-AlTi3+Ni{AlxTi1-x}2+ τ4-AlNi2Ti and 2-AlTi33-Al2NiTi24-AlNi2Ti. The earlier reported “homogeneous phase at Al23Ni26Ti51′” was shown by high resolution microprobe and X-ray diffraction measurements to be an extremely fine-grained eutectic. The experimental results are in fine agreement with the thermodynamic calculation.  相似文献   

7.
J. Lapin 《Intermetallics》1997,5(8):615-624
The effect of ageing in the temperature range from 1023 to 1373 K on the micro-structure and mechanical behaviour of a directionally solidified (DS) Ni3Al-based alloy modified with additions of chromium and iron was investigated. The microstructure of the as-grown alloy consisted of well-aligned and equally spaced lamellas composed of β(B2) intermetallic compound NiAl (Cr, Fe), some β′(L10) martensite and spherical -Cr precipitates. The matrix consisted of γ′(L12) intermetallic compound Ni3Al (Cr, Fe), γ-phase (Ni-based solid solution) and lath-shaped -Cr precipitates. Ageing at 1123 and at 1173 K was found to be the most effective in transforming the unstable lamellae to γ′-phase and -Cr precipitates. The change of microstructural characteristics such as volume fraction of lamellae, size, morphology and distribution of γ′-phase, γ-phase and -Cr precipitates significantly influenced the room-temperature yield strength and elongation of DS alloy after ageing. The strain-hardening exponent varied with the ageing temperature between 0.30 and 0.46 and the quasi-steady work-hardening rate between 2710 and 5340 MPa. In the specimens with the lowest amount of disordered regions, the strain-hardening exponent was found to be 0.46 and the quasisteady work hardening rate was determined to be 3340 MPa.  相似文献   

8.
The microstructure and the erosive–corrosive wear (ECW) performance of laser-clad Ni–Cr3C2 and Ni–WC coatings with overlapping clad tracks (OCT) on a 0.2% C martensitic stainless steel were investigated by scanning electron microscopy (SEM), XRD, EDX techniques and ECW testing. The coating produced by completely dissolving Cr3C2 particles in laser melted pool is composed of austenite (γ) dendrites surrounded by a γ-M7C3 eutectic, whereas another one is of granular solidifying structure in which contains the incompletely dissolved WC particles. The microhardness of Ni–WC coating is higher than that of Ni–Cr3C2, about 300 HV average. The main reason of microhardness difference is that two coatings have different solidified structure. The comparison of ECW tests found that the reduction of ECW rate dose not occur with the increase of hardness. The Ni–Cr3C2 coating with lower hardness has a lower ECW rate with respect to the Ni–WC one. Both average ECW rate decreased by approximately 30% and 60% as compared to that of stainless steel substrate, and both coatings had different ECW mechanism. The increase of ECW resistance is closely related to structure state, kind and amount of carbides, microhardness and toughening ability of the clad layer.  相似文献   

9.
Phase equilibria in the Co-rich Co–Al–W ternary system were determined with a unique diffusion-couple technique in which Co–27Al and Co–15W binary alloys (at. %) were first coupled for interdiffusion and then heat-treated for precipitation. After a diffusion process at 1300 °C for 20 h, concentration gradients of Al and W were formed in the γ-Co(A1) matrix in the vicinity of the coupled interface. After a heat treatment at 900 °C for 500 h the γ′-Co3(Al,W)(L12) phase was formed with a coarsened shape in contact with the γ, CoAl(B2) and Co3W(D019) phases. Additionally, it appeared with a submicron cuboidal shape within the γ matrix. After 2000 h, however, the coarsened γ′ phase became infrequent and the three phases of γ, CoAl and Co3W came into frequent contact with each other. These results clearly demonstrate that the γ′ phase is metastable and the three phases of γ, CoAl and Co3W are thermodynamically in equilibrium at 900 °C in the Co–Al–W ternary system.  相似文献   

10.
The solidification characteristics of the γ phase from the liquid and the subsequent decomposition of the γ phase control the evolution of the microstructure in nickel–base superalloy welds. The precipitation of the γ′ phase from the γ phase during continuous cooling conditions (0.17–75 K s−1) from the solutionizing temperature was characterized in a directionally solidified CM247DS alloy with thermomechanical simulator, and by transmission electron microscopy, atom probe field ion microscopy and atom probe tomography. The number density increased; size decreased and morphology of the γ′ precipitates changed with an increase in cooling rate. Under rapid water-quenched conditions, complex partitioning of the alloying elements between γ and γ′ phases was observed. Atom probe tomography on samples subjected to slower cooling rates showed different partitioning behavior compared to that of water-quenched samples and the presence of secondary γ′ precipitates in the samples subjected to a cooling rate of 1 K s−1.  相似文献   

11.
Compression tests have been carried out for a Cu-Al-Ni single crystal at temperatures well above the martensitic transformation, near the transformation or below it (in martensitic state). The composition was selected in order to obtain either β-β′ or β-γ′ thermal martensitic transformations, after suitable thermal treatments. The characteristics of the martensitic transformation and structural changes after the compression tests have been studied by means of calorimetry (DSC) and TEM. The obtained results show that when a compressive stress is applied on quenched samples (TTA treatment, β-β′ thermal transformation) a β-(β′)-γ′ transformation or a β′-γ′ one are stress-induced, depending whether the initial state is the parent or the martensitic phase. For aged samples (TTB treatment, β-γ′ thermal transformation) the application of stress brings about the β-γ′ transformation or γ′ re-orientation, depending on the initial state. In all the cases a notable martensite stabilisation is observed only when the stress–strain loop is not closed, that means when a permanent strain remains in the material after unloading. A direct relationship between the applied deformation when stressing the sample and the degree of stabilisation has been obtained for different strain values (between 5% and 12%) and for each set of samples (TTA and TTB). At the same time, the evolution of the characteristics of the martensitic phases with the degree of deformation has been studied. The stress induced stabilisation mechanism is related to the presence of non-twinned γ′ martensite which makes difficult the retransformation to the parent phase.  相似文献   

12.
In part I of this paper, the sintering and creep resistances of the five kinds of anode electrodes were compared and those of Ni–Ni3Al(5)–Al(3) were even better than any other electrodes. In part II of this paper, the wetting abilities of the same five kinds of anode electrodes to the electrolyte and their performance in unit cell operation were investigated. Their contact angles, which indicate the wetting ability, were within the range between 77 and 84°. The contact angles of Al- and/or Ni3Al-added electrodes such as Ni–Al(5), Ni–Ni3Al(7) and Ni–Ni3Al(5)–Al(3) were relatively lower than those of Cr-added electrodes. Although there was no evidence that the effect of Al and/or Ni3Al addition to pure Ni could enhance the number of pores or improve their structure for more wetting ability, it could be clearly known that the component of Al and/or Ni3Al in anode electrode could make the electrode be wetted by the electrolyte very well.

In unit cell operation, the electric resistance of Ni–Al(5) and Ni–Ni3Al(5)–Al(3) were relatively lower than those of any other electrodes. After 120 h operation of the unit cell, the cell performance and the endurance of Ni–Ni3Al(5)–Al(3) were even better than those of any other electrodes. And also its thickness shrinkage and porosity changes after unit cell operation were the least in five kinds of electrodes. The performance of Ni–Ni3Al(5)–Al(3) as anode seems to be caused by the synergy effect between the strengthening characteristics of Ni3Al and electric conductivity of Al.  相似文献   


13.
A technique for fabrication of coated TiCN–Ni–Mo cermets with functionally graded microstructure and composition has been developed. A multilayer coating and the substrate near-surface zone with graded microstructure form as a result of interaction between the cermets and chromium vapour in vacuum. The coating consists of an upper layer of chromium carbide of about 10 μm in thickness and a thin interlayer of less than 1 μm composed of a Ni–Cr alloy between the carbide layer and the substrate. The wide near-surface zone of over 100 μm in thickness with graded microstructure and composition forming under the coatings has an increased Cr content in the Ni-based binder. This zone is characterised by enhanced corrosion- and oxidation-resistance.  相似文献   

14.
Mg–Gd is a promising light hardenable alloy with a high creep resistance at elevated temperatures. The supersaturated solid solution of Gd in Mg decomposes in a sequence of the following phases: β″ (D019) → β′ (c-base centered orthorhombic-c-bco) → β (fcc) stable. Formation of the metastable β′ phase causes a strong hardening. Dislocations facilitate nucleation of precipitates. Dislocation density is, therefore, an important parameter which influences the precipitation process. This effect was examined in the present work by comparison the decomposition sequences in Mg–15 wt.%Gd alloy cold rolled to various thickness reductions. It was found that precipitation of the β′ phase starts at lower temperatures in the cold rolled specimens.  相似文献   

15.
To develop an anode electrode of molten carbonate fuel cell (MCFC) that has higher creep and sintering resistance and more stable reactivity than the traditional anode electrode, the five kinds of nickel anode electrodes such as Ni–Al(5), Ni–Cr(10), Ni–Ni3Al(7), Ni–Ni3Al(5)–Cr(5) and Ni–Ni3Al(5)–Al(3) (number in parenthesis means the weight percent of its component) were prepared and their performance were investigated under the same conditions of MCFC operation. In part I of our study, their relative creep and sintering resistance were compared.

The Ni–Ni3Al(5)–Al(3) anode electrode was the most resistant against the sintering and its porosity was kept over 60% even at 1000 °C. And its porosity decrease and thickness shrinkage by creep were the least among the five kinds of anode electrodes. Thus, the effects of the aluminum and nickel–aluminum intermetallic compound (Ni3Al) addition to nickel as the dispersant strengthening and the solid solution strengthening agents were confirmed by comparative tests for sintering and creep resistance of five kinds of anode electrodes.

Besides these results, we could also know that the creep of anode electrode for MCFC mostly proceeded within 60 h from the start of operation irrespective of the kinds of anode electrodes. And in part II of paper, for more information about the wetting ability and cell performances of these five kinds of anode electrodes, the measurement of wetting ability and unit cell operations were carried out.  相似文献   


16.
Microstructure of model cermets with high Mo or W content   总被引:13,自引:0,他引:13  
The microstructure of (mol%) TiC–18TiN–24Ni–(10–29)WC and TiC–18TiN–24Ni–(5–14)Mo2C has been investigated using X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM) and analytical electron microscopy (AEM). When the WC content in the raw materials was increased the W content in the outer rim of (Ti, W)(C, N) grains increased until it had a composition similar to that of the inner rim. If the WC content was high undissolved WC was present after sintering. When the Mo2C content in the raw materials was increased, the volume fraction of inner rim increased and the Mo content in both inner and outer rim increased. Thermodynamical calculations on the Ti–W–C–N system suggest that the inner rim is formed during solid state sintering when there is an open porosity and thus a low nitrogen activity. The composition of the outer rim can be explained by the equilibrium at the sintering temperature if the volume fraction of undissolved Ti(C, N) cores is subtracted. Calculations on the Ti–Mo–C–N system show that (Ti, Mo)(C, N) decomposes into two phases with different Mo content and that the Ti(C, N) cores might be regarded as a stable phase.  相似文献   

17.
Plastic deformation by cold rolling produces important changes on microstructure of the duplex stainless steel UNS S31803. Structure refinement and martensitic transformation were detected and analyzed by microscopy, X-ray diffraction and magnetic measurements. True deformations in the range of 0.92–3.38 were applied. The maximum amount of ′ martensite was 30.2% obtained with the maximum deformation applied (3.38). The annealing at 400 °C promotes a further increase of ′ martensite content, as observed before in austenitic metastable steels. Hardness against deformation curves of AISI 304L and duplex steel were compared and analyzed. The stability of the martensite phase with temperature was investigated by magnetic measurements, and it is found that the reverse reaction ′ → γ starts between 500 and 520 °C.  相似文献   

18.
The structural relationship between the hydride phases in Ti–Mo–H solid solution system (Mo content up to 15 at% in the alloy) during dehydrogenation process under annealing has been studied by conventional and in situ X-ray powder diffraction and transmission electron microscopy (TEM) analysis. During dehydrogenation, the saturated hydrides of the Ti–Mo alloys with fcc δ-phase structure transfer into bcc β-phase at higher temperatures. An associated hydrogen concentration reduction for the δ-phase hydride is observed in the process. However, as the hydrogen concentrations decrease to certain values (H/M  1.1–1.7), the unsaturated δ-phase formed at high temperature would become unstable at lower temperature, and transfer into a tetragonal phase (denoted the -phase here). Unlike that of the -phase in Ti–H system, the phase transition does not occur for the saturated δ-phase with hydrogen concentration close to the stoichiometric limit. The hydrogen concentration of this -phase hydride is in between that of the tetragonal γ and -phase in Ti–H system, but more close to the γ-phase. The occurrence region of this -phase expands along with the increase of the Mo content in the alloys. The phase has a lattice similar to that of the -phase in Ti–H system with corresponding fct unit-cell c/a < 1.  相似文献   

19.
The electrodeposited Y2O3-dispersed γ-Ni+γ-Ni3Al coatings on Ni substrates were developed by the conversion of electrodeposited Ni-Al-Y2O3 films with dispersed AI microparticles in Ni matrix into Ni3Al by vacuum annealing at 800 ℃ for 3 h. For comparison, Y2O3-free γ-Ni+γ'-Ni3Al coatings with a similar AI content were also prepared by vacuum annealing the electrodeposited microparticle-dispersed composite coatings of Ni-AI under the same condition. SEM and TEM characterizations show that the electrodeposited Y2O3-dispersed γ+γ' coatings exhibit finer grains, a more homogeneous distribution of γ', and a narrowed γ' phase spacing compared with the electrodeposited Y2O3-free γ-γ' coatings. The oxidation at 1 000 ~C shows that the addition of Y2O3 significantly improves the oxidation resistance of the electrodeposited γ+γ'coatings. The effect of Y2O3 particles on the microstructure and oxidation behavior of the electrodeposited γ+y' coatings was discussed in detail.  相似文献   

20.
The sulfidation/oxidation and carburization resistances of a Ni3Al(Mo) (IC-6) alloy at high temperatures were investigated in this work. The corrosion kinetics of the IC-6 alloy was found to follow parabolic rate law in an environment of high partial pressures of sulfur (10−5 atm) and low partial pressures of oxygen (<10−20 atm) at 700 °C. Because the Ni sulfides are readily formed at the testing temperature, the sulfidation/oxidation resistance of the IC-6 alloy is similar to that of commercial Ni–Cr alloys in the current environments, although IC-6 is alloyed with Al. Compared with the HP heat resistant steel which is commonly used in the petrochemical industry, the IC-6 alloy possesses significantly improved resistance to carburization at 1100 °C. The mechanisms governing the corrosion attack in the environments used in this investigation were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号