首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Concentrations of total gaseous mercury (TGM) were measured continuously at four urban residential locations (G (Guro-gu); N (Nowon-gu); S (Songpa-gu); and Y (Yongsan-gu)) in Seoul, Korea from 2004 to 2009. The mean concentrations of Hg at these sites were found on the order of N (3.98 ± 1.68 ng m− 3), S (3.87 ± 1.56 ng m− 3), G (3.80 ± 1.60 ng m− 3), and Y (3.36 ± 1.55 ng m− 3). Evidence indicates that the spatial distribution of Hg should be affected by the combined effects of both local anthropogenic (incineration facilities and thermal power plants) and natural (soil) emission sources in association with the meteorological parameters. Inspection of the Hg temporal patterns indicates the co-existence of contrasting seasonal patterns between the central site Y (winter dominance) and all other outbound sites near city borders (summer dominance). The long-term trend of Hg, if examined by combining our previous studies and the present one, shows that Hg levels in this urban area declined gradually across decadal periods despite slight variabilities in spatial scale: (1) above 10 ng m− 3 in the late 1980s, (2) ~ 5 ng m− 3 in the late 1990s, and (3) ~ 3 ng m− 3 toward the late 2000s. The results of the principal component analysis along with observed differences in seasonal patterns (between study sites) suggest that Hg distributions between different urban sites are greatly distinguishable with strong source signatures at each individual site.  相似文献   

2.
The Lake Wabamun area, in Alberta, is unique within Canada as there are four coal-fired power plants within a 500 km2 area. Continuous monitoring of ambient total gaseous mercury (TGM) concentrations in the Lake Wabamun area was undertaken at two sites, Genesee and Meadows. The data were analyzed in order to characterise the effect of the coal-fired power plants on the regional TGM. Mean concentrations of 1.57 ng/m3 for Genesee and 1.50 ng/m3 for Meadows were comparable to other Canadian sites. Maximum concentrations of 9.50 ng/m3 and 4.43 ng/m3 were comparable to maxima recorded at Canadian sites influenced by anthropogenic sources. The Genesee site was directly affected by the coal-fired power plants with the occurrence of northwest winds, and this was evident by episodes of elevated TGM, NOx and SO2 concentrations. NOx/TGM and SO2/TGM ratios of 21.71 and 19.98 µg/ng, respectively, were characteristic of the episodic events from the northwest wind direction. AERMOD modeling predicted that coal-fired power plant TGM emissions under normal operating conditions can influence hourly ground-level concentrations by 0.46-1.19 ng/m3. The effect of changes in coal-fired power plant electricity production on the ambient TGM concentrations was also investigated, and was useful in describing some of the episodes.  相似文献   

3.
The concentrations of total gaseous mercury (TGM) and relevant environmental parameters were measured at a remote area on Jeju Island, Korea from May 2006 to May 2007. The hourly mean concentration of Hg for the entire study period was 3.85 ± 1.68 ng m− 3 (range of 0.10-17.9: n = 7450). The temporal patterns of Hg at the island site were characterized by the relative dominance in spring/fall over summer/winter and in daytime over nighttime. The possible impact of Asian dust (AD) on Hg distribution was examined by assessing its relationship with PM10 data. Because of a strong inverse log-log correlation between Hg and PM10 levels (above 200 µg m− 3), a direct relationship between the two parameters is difficult to account for. However, the analysis of air mass movement patterns confirmed that the Hg levels on Jeju Island were affected most by the combined effects of major source processes in the surrounding areas: industrial and AD (China), industrial (Korea), and volcanic activity (Japan).  相似文献   

4.
The St. Lawrence River near Cornwall, Ontario was designated an Area of Concern by the International Joint Commission in 1985. Sediments from this area have historically been contaminated with mercury (Hg), and although concentrations have decreased since the 1970s, they still remain high. Nine sediment cores were collected from three sites within the Area of Concern in 2004/05 to determine the variability in historical profiles of Hg deposition to the river. Sediment and pore water phases were analyzed for total mercury (THg) and methyl mercury (MeHg) and cores were analyzed for 210Pb to determine chronologies of sedimentation at these sites. Mercury diffusion rates in pore waters within the sediment column were determined to be very low (between 0 and 2.15 ng cm− 2 year− 1, n = 3) compared to the recent Hg sedimentation rates at these sites (183 ± 30 ng cm− 2 year− 1 SE, n = 9) determined by multiplying surface Hg concentrations with 210Pb-derived sedimentation rates. These results indicate that Hg profiles in these cores accurately depict historical releases of Hg to the river bed. The influence of federal regulations in the early 1970s to restrict Hg emissions to the river was apparent in these dated sediment cores, as were the closures of several local industries in the mid 1990s. Mercury accumulation rates prior to 1970 were 60 times higher than those occurring after 1995. Methyl mercury showed surface enrichment in most of these sediment cores providing evidence that mercury methylation occurred most rapidly near the sediment surface.  相似文献   

5.
We investigated the effects of the East Asian Summer Monsoon (EASM), which brings approximately half of Korea's annual rainfall in July, on the concentration and particle-water partitioning, and sources of Hg in coastal waters. Surface seawater samples were collected from eight sites in Gwangyang Bay, Korea, during the monsoon (July, 2009) and non-monsoon dry (April and November, 2009) seasons and the concentrations of suspended particulate matter, chlorophyll-a, and unfiltered and filtered Hg were determined. We found significant (p < 0.05) increases in filtered Hg in the monsoon season (1.8 ± 0.019 pM) compared to the dry season (0.62 ± 0.047 pM). In contrast, the Hg concentrations associated with particles showed no significant differences (p > 0.05) between the monsoon (459 ± 141 pmol g− 1) and the dry season (346 ± 30 pmol g− 1), which resulted in decreased particle-water partition coefficients of Hg in the monsoon season compared to the values in the dry season: 5.7 ± 0.1 in April, 5.3 ± 0.1 in July, and 5.8 ± 0.1 in November. The annual Hg input to Gwangyang Bay was estimated at 64 ± 6.6 mol yr− 1 and 27 ± 1.9 mol yr− 1 for unfiltered and filtered Hg, respectively. The Hg discharged from rivers was a major source of Hg in Gwangyang Bay: the river input contributed 83 ± 13% of total input of unfiltered and 73 ± 6.0% of filtered Hg. On a monthly basis, unfiltered Hg input was 17 ± 11 mol month− 1 in the monsoon season and 3.2 ± 0.70 mol month− 1 in the dry season, while filtered Hg input was 7.1 ± 4.1 mol month− 1 in the monsoon and 1.3 ± 0.26 mol month− 1 in the dry. Consequently, the EASM resulted in an unfiltered Hg input 5.3 times greater than the mean dry month input and a filtered Hg input 5.5 times greater than the mean dry month input, which is mainly attributable to enhanced river water discharge during the monsoon season.  相似文献   

6.
Concentrations of gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM) and particulate-bound mercury (PBM) were measured along with ancillary variables 9 km east of downtown Reno, Nevada, U.S.A. from November 2006 through March 2009. Mean two-year (February 2007 through January 2009) GEM, GOM, and PBM concentrations were 2.0 ± 0.7 ng m− 3 (± standard deviation), 18 ± 22 pg m− 3, and 7 ± 7 pg m− 3, respectively. Data collected were compared with observations made at another location just north of the city at 169 m higher elevation. At both locations higher concentrations of GEM and PBM occurred in periods with little atmospheric mixing, indicating that local sources were important for enhancing GEM and PBM concentrations in Reno above that considered continental background. Concentrations of GOM were higher (maximum of 177 pg m− 3) during periods with higher temperature and lower dew point. Higher GOM concentrations at the higher elevation site with less urban impact relative to the valley site, along with other data trends, support the hypothesis that in northern Nevada subsiding dry air from the free troposphere is a source of GOM to the surface.  相似文献   

7.
The distribution of the solvent-extractable organic components in the fine (PM1) and coarse (PM1-10) fractions of airborne particulate was studied for the first time in Algeria. That was done during October 2006 concurrently in a big industrial district, a busy urban area, and a forest national park located in Algiers, Boumerdes, Blida, respectively, which are the three biggest provinces of Northern Algeria. Most of the organic matter identified in both particle size ranges consisted of n-alkanes and n-alkanoic acids, with minor contributions coming from polycyclic aromatic hydrocarbons (PAHs), nitrated polycyclic aromatic hydrocarbons (NPAHs), oxygenated PAHs, and other polar compounds (e.g., caffeine and nicotine). The potential emission sources of airborne contaminants were reconciled by combining the values of n-alkane carbon preference index (CPI) and selected diagnostic ratios of PAHs, calculated in both size ranges. The mean cumulative concentrations of PAHs reached 3.032 ng m− 3 at the Boumerdes site, urban, 80% of which (i.e. 2.246 ng m− 3) in the PM1 fraction, 6.462 ng m− 3 at Rouiba-Réghaia, industrial district, (5.135 ng m− 3 or 80% in PM1), and 0.512 ng m− 3 at Chréa, forested mountains (0.370 ng m− 3 or 72% in PM1). Similar patterns were shown by all organic groups, which resulted overall enriched in the fine particles at the three sites. Carcinogenic and mutagenic potencies associated to PAHs were evaluated by multiplying the concentrations of “toxic” compounds times the corresponding potency factors normalized vs. benzo(a)pyrene (BaP), and were found to be both acceptable.  相似文献   

8.
In this study, we measured polycyclic aromatic hydrocarbons (PAHs) in aerosols in Xi'an, China from 2005 to 2007, by using a modified Soxhlet extraction followed by a clean-up procedure using automated column chromatography followed by HPLC/fluorescence detection. The sources of PAHs were apportioned by using the positive matrix factorization (PMF) method. The PM10 concentration in winter (161.1 ± 66.4 μg m− 3, n = 242) was 1.5 times higher than that in summer (110.9 ± 34.7 μg m− 3, n = 248). ΣPAH concentrations, which are the sum of the concentrations of all detected PAHs, in winter (344.2 ± 149.7 ng m− 3, n = 45) was 2.5 times higher than that in summer (136.7 ± 56.7 ng m− 3, n = 24) in this study. These strong seasonal variations in atmospheric PAH concentration are possibly due to coal combustion for residential heating. According to the source apportionment with PMF method in this study, the major sources of PAHs in Xi'an are categorized as (1) mobile sources such as vehicle exhaust that constantly contribute to PAH pollution, and (2) stationary sources such as coal combustion that have a large contribution to PAH pollution in winter.  相似文献   

9.
Antimony (Sb) has received increasing attention recently due to its toxicity and potential human carcinogenicity. In the present work, drinking water, fish and algae samples were collected from the Xikuangshan (XKS) Sb mine area in Hunan, China. Results show that serious Sb and moderate arsenic (As) contamination is present in the aquatic environment. The average Sb concentrations in water and fish were 53.6 ± 46.7 μg L− 1 and 218 ± 113 μg kg− 1 dry weight, respectively. The Sb concentration in drinking water exceeded both Chinese and WHO drinking water guidelines by 13 and 3 times, respectively. Antimony and As concentrations in water varied with seasons. Fish gills exhibited the highest Sb concentrations but the extent of accumulation varied with habitat. Antimony enrichment in fish was significantly lower than that of As and Hg.  相似文献   

10.
Dutta PK  Rabaey K  Yuan Z  Keller J 《Water research》2008,42(20):4965-4975
Most of the existing sulfide removal processes from wastewaters and waste gases require substantial amounts of energy inputs. Here we present an electrochemical method by means of a fuel cell that removes sulfide while producing energy. A lab scale fuel cell was operated at ambient temperature and neutral pH, which was capable of removing aqueous sulfide continuously for 2 months at a rate of 0.62 ± 0.1 kg S m−3 d−1 of net anodic compartment (NAC) (0.28 ± 0.05 kg S m−3 d−1 of total anodic compartment, TAC). During continuous operation, on average, the power generated was 12 ± 2 W m−3 NAC (5 ± 1 W m−3 TAC), with a maximum capacity of the cell of 166 W m−3 NAC (74 W m−3 TAC). Potassium ferricyanide was used as cathodic electron acceptor. Elemental sulfur was identified as the predominant final oxidation product that was deposited on the anode. In this abiotic fuel cell, the sulfide oxidation rate was not diminished by the presence of an organic electron donor (acetate) during batch experiments while the acetate concentration remained unchanged. This is particularly important for selective sulfide removal from wastewater where organics are essential for downstream nutrient removal. Elemental sulfur deposited on the anode appeared to limit the operation of the fuel cell after 3 months of operation, necessitating periodic removal of the accumulated sulfur from the electrode.  相似文献   

11.
Atmospheric ammonia has been shown to degrade regional air quality and affect environmental health. In-situ measurements of ammonia are needed to determine how ambient concentrations vary in different ecosystems and the extent to which emission sources contribute to those levels. The objective of this study was to measure and compare ammonia concentrations in two Tennessee Valley (USA) ecosystems: a forested rural area and a metropolitan site adjacent to a main transportation route. Integrated samples of atmospheric ammonia were collected with annular denuder systems for ~ 4 weeks during the summer of 2009 in both ecosystems. Ancillary measurements of meteorological variables, such as wind direction and precipitation, were also conducted to determine any relationships with ammonia concentration. Measurements in the two ecosystems revealed ammonia concentrations that were mostly representative of background levels. Arithmetic means were 1.57 ± 0.68 μg m− 3 at the metropolitan site and 1.60 ± 0.77 μg m− 3 in the forest. The geometric mean concentrations for both sites were ~ 1.46 μg m− 3. Wind direction, and to a lesser extent air temperature and precipitation, did influence measured concentrations. At the metropolitan site, ammonia concentrations were slightly higher in winds emanating from the direction of the interstate highway. Meteorological variables, such as wind direction, and physical factors, such as topography, can affect measurement of ambient ammonia concentrations, especially in ecosystems distant from strong emission sources. The 12-h integrated sampling method used in this study was unable to measure frequent changes in ambient ammonia concentrations and illustrates the need for measurements with higher temporal resolution, at least ~ 1-2 h, in a variety of diverse ecosystems to determine the behavior of atmospheric ammonia and its environmental effects.  相似文献   

12.
Mercury emission to atmosphere from primary Zn production in China   总被引:1,自引:0,他引:1  
Emissions of mercury (Hg) to air have regional and global impacts through long range transport in the atmosphere. Primary Zn production is regarded as an important anthropogenic Hg source in China, but research on its Hg emission is limited. To gain a better understanding of Hg emissions from Zn production activities in China, field investigations at four industrial-scale Zn production plants using electrostatic process with Hg removal (HP-WR), electrostatic process without Hg removal (HP-WOR), retort Zn production (RZ), imperial smelting process (ISP), and one artisanal Zn smelting process (AZ) were carried out. In the investigation, Hg emission factors are defined as how much Hg was emitted to the atmosphere per ton Zn produced during various Zn production methods and were estimated by using mass balance method. The results showed that the estimated Hg emission factors of Zn production were 5.7 ± 4.0 g Hg t1 Zn for HP-WR, 31 ± 22 g Hg t1 Zn for HP-WOR, 34 ± 71 g Hg t1 Zn for RZ, 122 ± 122 g Hg t1 Zn g t1 for ISP, and 75 ± 115 g Hg t1 Zn for AZ. Approximately 80.7-104.2 t year1 of Hg was emitted to atmosphere from primary Zn production during the period of 2002-2006 in China.  相似文献   

13.
Regular measurements of size segregated as well as total mass concentration and size distribution of near surface composite aerosols, made using a ten-channel Quartz Crystal Microbalance (QCM) cascade impactor during the period of September 2007-May 2008 are used to study the aerosol characteristics in association with the synoptic meteorology. The total mass concentration varied from 59.70 ± 1.48 to 41.40 ± 1.72 μg m− 3, out of which accumulation mode dominated by ~ 50%. On a synoptic scale, aerosol mass concentration in the accumulation (submicron) mode gradually increased from an average low value of ~ 26.92 ± 1.53 μg m− 3 during the post monsoon season (September-November) to ~ 34.95 ± 1.32 μg m− 3 during winter (December-February) and reaching a peak value of ~ 43.56 ± 1.42 μg m− 3 during the summer season (March-May). On the contrary, mass concentration of aerosols in the coarse (supermicron) mode increased from ~ 9.23 ± 1.25 μg m− 3during post monsoon season to reach a comparatively high value of ~ 25.89 ± 1.95 μg m− 3 during dry winter months and a low value of ~ 8.07 ± 0.76 μg m− 3 during the summer season. Effective radius, a parameter important in determining optical (scattering) properties of aerosol size distribution, varied between 0.104 ± 0.08 μm and 0.167 ± 0.06 μm with a mean value of 0.143 ± 0.01 μm. The fine mode is highly reduced during the post monsoon period and the large and coarse modes continue to remain high (replenished) so that their relative dominance increases. It can be seen that among the two parameters measured, correlation of total mass concentration with air temperature is positive (R2 = 0.82) compared with relative humidity (RH) (R2 = 0.75).  相似文献   

14.
The nutrient concentrations and stoichiometry in a coastal bay/estuary are strongly influenced by the direct riverine discharge and the submarine groundwater discharge (SGD). To estimate the fluxes of submarine groundwater discharge into the Bamen Bay (BB) and the Wanquan River Estuary (WQ) of eastern Hainan Island, China, the naturally occurring radium isotope (226Ra) was measured in water samples collected in the bay/estuary in August 2007 and 2008. Based on the distribution of 226Ra in the surface water, a 3-end-member mixing model was used to estimate the relative contributions of the sources to these systems. Flushing times of 3.9 ± 2.7 and 12.9 ± 9.3 days were estimated for the BB and WQ, respectively, to calculate the radium fluxes for each system. Based on the radium fluxes from groundwater discharge and the Ra isotopic compositions in the groundwater samples, the estimated SGD fluxes were 3.4 ± 5.0 m3 s−1 in the BB and 0.08 ± 0.08 m3 s−1 in the WQ, or 16% and 0.06%, respectively, of the local river discharge. Using this information, the nutrient fluxes from the submarine groundwater discharge seeping into the BB and WQ regions were estimated. In comparison with the nutrient fluxes from the local rivers, the SGD-derived nutrient fluxes played a vital role in controlling the nutrient budgets and stoichiometry in the study area, especially in the BB.  相似文献   

15.
Despite the toxicity and widespread use of manganese (Mn) and lead (Pb) as additives to motor fuels and for other purposes, information regarding human exposure in Africa is very limited. This study investigates the environmental exposures of Mn and Pb in Durban, South Africa, a region that has utilized both metals in gasoline. Airborne metals were sampled as PM2.5 and PM10 at three sites, and blood samples were obtained from a population-based sample of 408 school children attending seven schools. In PM2.5, Mn and Pb concentrations averaged 17 ± 27 ng m− 3 and 77 ± 91 ng m− 3, respectively; Mn concentrations in PM10 were higher (49 ± 44 ng m− 3). In blood, Mn concentrations averaged 10.1 ± 3.4 μg L− 1 and 8% of children exceeded 15 μg L− 1, the normal range. Mn concentrations fit a lognormal distribution. Heavier and Indian children had elevated levels. Pb in blood averaged 5.3 ± 2.1 μg dL− 1, and 3.4% of children exceeded 10 μg dL− 1, the guideline level. Pb levels were best fit by a mixed (extreme value) distribution, and boys and children living in industrialized areas of Durban had elevated levels. Although airborne Mn and Pb concentrations were correlated, blood levels were not. A trend analysis shows dramatic decreases of Pb levels in air and children's blood in South Africa, although a sizable fraction of children still exceeds guideline levels. The study's findings suggest that while vehicle exhaust may contribute to exposures of both metals, other sources currently dominate Pb exposures.  相似文献   

16.
Land application of municipal biosolids can be a source of environmental contamination by pharmaceutical and personal care products (PPCPs). This study examined PPCP concentrations/temporally discrete mass loads in agricultural tile drainage systems where two applications of biosolids had previously taken place. The field plots received liquid municipal biosolids (LMB) in the fall of 2005 at an application rate of ∼ 93,500 L ha− 1, and a second land application was conducted using dewatered municipal biosolids (DMB) applied at a rate of ∼ 8 Mt dw ha− 1 in the summer of 2006. The DMB land application treatments consisted of direct injection (DI) of the DMB beneath the soil surface at a nominal depth of ∼ 0.11 m, and surface spreading (SS) plus subsequent tillage incorporation of DMB in the topsoil (∼ 0.10 m depth). The PPCPs examined included eight pharmaceuticals (acetaminophen, fluoxetine, ibuprofen, gemfibrozil, naproxen, carbamazepine, atenolol, sulfamethoxazole), the nicotine metabolite cotinine, and two antibacterial personal care products triclosan and triclocarban. Residues of naproxen, cotinine, atenolol and triclosan originating from the fall 2005 LMB application were detected in tile water nearly nine months after application (triclocarban was not measured in 2005). There were no significant differences (p > 0.05) in PPCP mass loads among the two DMB land application treatments (i.e., SS vs. DI); although, average PPCP mass loads late in the study season (> 100 days after application) were consistently higher for the DI treatment relative to the SS treatment. While the concentration of triclosan (∼ 14,000 ng g− 1 dw) in DMB was about twice that of triclocarban (∼ 8000 ng g− 1 dw), the average tile water concentrations for triclosan were much higher (43 ± 5 ng L− 1) than they were for triclocarban (0.73 ± 0.14 ng L− 1). Triclosan concentrations (maximum observed in 2006 ∼ 235 ng L− 1) in tile water resulting from land applications may warrant attention from a toxicological perspective.  相似文献   

17.
The MERSADE Project (LIFE — European Union) tested the Las Cuevas decommissioned mining complex (Almadén mercury district, Spain) as a potential site for the installation of a future European prototype safe deposit of surplus mercury from industrial activities. We here present the results of a baseline study on the distribution of mercury in soils and air in the Las Cuevas complex and surrounding areas, and show the results of a plume contamination model using the ISC-AERMOD software. Despite restoration works carried out in 2004, the Las Cuevas complex can still be regarded as hotspot of mercury contamination, with large anomalies above 800 μg g− 1 Hg (soils) and 300 ng Hg m− 3 (air). In the case of soils, high, and persistent concentrations above 26 μg g− 1 Hg extend well beyond the complex perimeter for more than 2 km. These concentrations are about three orders of magnitude above world baselines. The same applies to mercury in air, with high concentrations above 300 ng Hg m− 3 inside the perimeter, which nonetheless fade away in a few hundred meters. Air contamination modelling (Hg gas) predicts formation of a NW-SE oriented narrow plume extending for a few hundred meters from the complex perimeter. The geographic isolation of Las Cuevas and its mining past make the complex an ideal site for mercury stocking. The only potential environmental hazards are the raising of livestock only a few hundred meters away from the complex and flash floods.  相似文献   

18.
A 13-month sampling campaign was conducted at a remote site in southwestern China from October, 2005 to December, 2006. An integrated approach with lead isotopes and air back trajectory analysis was used to investigate the monsoon-associated atmospheric transport of PBDEs in tropical/subtropical Asia regions. The air concentration of PBDEs ranged from 1.6 to 57.5 pg m− 3 (15.9 ± 12.0 pg m− 3), comparable to reported levels at other remote sites in the world. BDE-209, followed by BDE-47 and -99 dominated the PBDE compositions, indicating a mixed deca- and penta-BDE source. Air mass back trajectory analysis revealed that the major potential source regions of BDE-47 and -99 could be southern China and Thailand, while those of BDE-209 are widely distributed in industrialized and urbanized areas in tropical Asia. The different lead isotope compositions of aerosols between trajectory clusters further substantiated the observation that the South Asian monsoon from spring to summer could penetrate deep into southwestern China, and facilitate long-range transport of airborne pollutants from South Asia.  相似文献   

19.
20.
The occurrence of illicit substances in the air was investigated in various world locations and ambient conditions. The analytical procedure optimized for cocaine, methadone and cocaethylene, based upon soxhlet extraction with organic solvent, clean-up through column chromatography, gas chromatographic separation and mass spectrometric detection, allowed the detection of the three compounds at levels as low as ~ 1 pg m− 3 in air samples of ~ 500 m3. Apart from Algiers, Algeria, and Pan?evo, Serbia, cocaine was found in all cities investigated and its concentration ranged from picograms to nanograms/cubic meter (e.g., Rome, Italy, 22 ÷ 97 pg m− 3; Santiago, Chile, 2.2 ÷ 3.3 ng m− 3). By contrast, the concentrations of methadone and cocaethylene in the air were always lower than the limit-of-detection allowed by the method. The procedure adopted was unsuitable for measuring cannabinoids and allowed only the identification of cannabinol. It was also poor in limit-of-detection with regards to heroin (35 pg m− 3), however this compound could be identified in airborne particulates in Oporto, Portugal. Atmospheric concentrations of cocaine appeared to correlate to drug prevalence in the Italian regions investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号