首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acidification of freshwaters is a global phenomenon, occurring both through natural leaching of organic acids and through human activities from industrial emissions and mining. The West Coast of the South Island, New Zealand, has both naturally acidic and acid mine drainage (AMD) streams enabling us to investigate the response of fish communities to a gradient of acidity in the presence and absence of additional stressors such as elevated concentrations of heavy metals. We surveyed a total of 42 streams ranging from highly acidic (pH 3.1) and high in heavy metals (10 mg L1 Fe; 38 mg L1 Al) to circum-neutral (pH 8.1) and low in metals (0.02 mg L1 Fe; 0.05 mg L1 Al). Marked differences in pH and metal tolerances were observed among the 15 species that we recorded. Five Galaxias species, Anguilla dieffenbachii and Anguillaaustralis were found in more acidic waters (pH< 5), while bluegill bullies (Gobiomorphus hubbsi) and torrentfish (Cheimarrichthys fosteri) were least tolerant of low pH (minimum pH 6.2 and 5.5, respectively). Surprisingly, the strongest physicochemical predictor of fish diversity, density and biomass was dissolved metal concentrations (Fe, Al, Zn, Mn and Ni) rather than pH. No fish were detected in streams with dissolved metal concentrations > 2.7 mg L1 and nine taxa were only found in streams with metal concentrations < 1 mg L1. The importance of heavy metals as critical drivers of fish communities has not been previously reported in New Zealand, although the mechanism of the metal effects warrants further study. Our findings indicate that any remediation of AMD streams which seeks to enable fish recolonisation should aim to improve water quality by raising pH above ≈ 4.5 and reducing concentrations of dissolved Al and Fe to < 1.0 mg L1.  相似文献   

2.
A full-scale passive treatment system (PTS) was commissioned in 2003 to treat two net-acidic coal mine water discharges in the Durham coalfield, UK. The principal aim of the PTS was to decrease concentrations of iron (< 177 mg L1) and aluminium (< 85 mg L1) and to increase pH (> 3.2) and alkalinity (≥ 0 mg L1 CaCO3 eq). Secondary objectives were to decrease zinc (< 2.8 mg L1), manganese (< 20.5 mg L1) and sulfate (< 2120 mg L1). Upon treatment, water qualities were improved by 84% in the case of Fe, 87% Al, 83% acidity, 51% Zn, 23% Mn and 29% SO42. Alkalinity (74%) and pH (95% as H+) were increased. Area adjusted removal rates (Fe = 1.49 ± 0.66 g d1 m2; acidity = 6.7 ± 4.9 g d1 m2) were low compared to design criteria, mainly due to load limitation. Disregarding seasonality effects, acidity removal and effluent pH were stable over time. A substantial temporal decrease in calcium and alkalinity generation suggests that limestone is increasingly armoured. Once pH is no longer buffered by the carbonate system, metals could be remobilized, putting treatment efficiency at risk.  相似文献   

3.
Year-round bulk air deposition samples were collected at 15 sites in the Pearl River Delta (PRD) on a bimonthly basis from Dec 2003 to Nov 2004, and the particle-phase deposition of BDE-209, PAHs, DDTs and chlordane was measured. The annual deposition fluxes of BDE-209, total PAHs (15 compounds), total DDT (sum of p,p′-DDE, p,p′-DDD, p,p′-DDT, and o,p′-DDT ), and chlordane (sum of trans-chlordane and cis-chlordane) varied from 32.6 to 1970 μg m− 2 yr− 1, 22 to 290 μg m− 2 yr− 1, 0.8 to 11 μg m− 2 yr− 1, and 0.25 to 1.9 μg m− 2 yr− 1, respectively. Spatial variations were higher in the centre of the PRD and lower at the coastal sites for all compounds. The seasonal variations of deposition were found to be compound-dependent, influenced by a number of factors, such as the timing of source input, temperature, and precipitation etc. In particular, source input time affected the deposition fluxes of BDE-209 and high-weight PAHs, while temperature-dependent gas-particle partitioning was a key factor for DDT and light-weight PAH deposition. During the whole sampling period, the atmospheric deposition of BDE-209, ΣPAHs, ΣDDTs, and chlordane onto Hong Kong reached about 93, 86, 2.1 and 2.1 kg yr− 1, respectively, and onto the PRD reached about 13,400, 2950, 82, and 63 kg yr− 1. By comparing the calculated total air deposition with the burden in the soils, the half residual time of BDE-209 in soils was estimated to be 3 years.  相似文献   

4.
To assess the atmospheric environmental impacts of anthropogenic reactive nitrogen in the fast-developing Eastern China region, we measured atmospheric concentrations of nitrogen dioxide (NO2) and ammonia (NH3) as well as the wet deposition of inorganic nitrogen (NO3 and NH4+) and dissolved organic nitrogen (DON) levels in a typical agricultural catchment in Jiangsu Province, China, from October 2007 to September 2008. The annual average gaseous concentrations of NO2 and NH3 were 42.2 μg m3 and 4.5 μg m3 (0 °C, 760 mm Hg), respectively, whereas those of NO3, NH4+, and DON in the rainwater within the study catchment were 1.3, 1.3, and 0.5 mg N L1, respectively. No clear difference in gaseous NO2 concentrations and nitrogen concentrations in collected rainwater was found between the crop field and residential sites, but the average NH3 concentration of 5.4 μg m3 in residential sites was significantly higher than that in field sites (4.1 μg m3). Total depositions were 40 kg N ha1 yr1 for crop field sites and 30 kg N ha1 yr1 for residential sites, in which dry depositions (NO2 and NH3) were 7.6 kg N ha1 yr1 for crop field sites and 1.9 kg N ha1 yr1 for residential sites. The DON in the rainwater accounted for 16% of the total wet nitrogen deposition. Oxidized N (NO3 in the precipitation and gaseous NO2) was the dominant form of nitrogen deposition in the studied region, indicating that reactive forms of nitrogen created from urban areas contribute greatly to N deposition in the rural area evaluated in this study.  相似文献   

5.
The purpose of this research was to determine the releasing behavior of zinc in municipal solid waste (MSW) in landfill site with respect to refuse and leachate as an inseparable system. Two simulated bioreactor landfills, one with leachate recirculation and the other without, were operated in room temperature for 320 days. Results showed that the content of zinc in MSW could amount to 591.29 ± 31.33-632.14 ± 18.98 µg g − 1 dry weight − 1 (DW − 1). It exceeded the set standard for “Environmental quality standard for soil” (≤ 500 µg g − 1 DW − 1) and had high potential environmental risk. The releasing behavior of zinc in refuse mainly experienced speciation of solid-Zn, Zn2+, ZnHCO3+, ZnCO3, Zn(OH)+, Zn(OH)2, Zn(NH3)42+, ZnS, etc. Zinc in refuse showed behaviors of staggered migration and retention, which corresponded with the degradation process of refuse in bioreactor landfill. The Zn2+ concentration in leachate, which varied correspondingly with releasing behavior of zinc in refuse, were 0.75 mg L − 1 to 3.13 mg L − 1 and had no great difference in landfill with different operation modes (CL and RL). However, the amount of Zn2+ leached out from refuse, which accounted for 28.70 mg and 130.67 mg after 320 day's operation, respectively. More attention should be paid to the inseparable system including refuse and leachate together.  相似文献   

6.
In order to estimate atmospheric metal deposition in Southern Europe since the beginning of the Industrial Period (~ 1850 AD), concentration profiles of Pb, Zn and Cu were determined in four 210Pb-dated peat cores from ombrotrophic bogs in Serra do Xistral (Galicia, NW Iberian Peninsula). Maximum metal concentrations varied by a factor of 1.8 for Pb and Zn (70 to 128 μg g−1 and 128 to 231 μg g−1, respectively) and 3.5 for Cu (11 to 37 μg g−1). The cumulative metal inventories of each core varied by a factor of 3 for all analysed metals (132 to 329 μg cm−2 for Pb, 198 to 625 μg cm−2 for Zn and 22 to 69 μg cm−2 for Cu), suggesting differences in net accumulation rates among peatlands. Although results suggest that mean deposition rates vary within the studied area, the enhanced 210Pb accumulation and the interpretation of the inventory ratios (210Pb/Pb, Zn/Pb and Cu/Pb) in two bogs indicated that either a record perturbation or post-depositional redistribution effects must be considered. After correction, Pb, Zn and Cu profiles showed increasing concentrations and atmospheric fluxes since the mid-XXth century to maximum values in the second half of the XXth century. For Pb, maximum fluxes were observed in 1955-1962 and ranged from 16 to 22 mg m−2 yr−1 (mean of 18 ± 1 mg m−2 yr−1), two orders of magnitude higher than in the pre-industrial period. Peaks in Pb fluxes in Serra do Xistral before the period of maximum consumption of leaded petrol in Europe (1970s-1980s) suggest the dominance of local pollutant sources in the area (i.e. coal mining and burning). More recent peaks were observed for Zn and Cu, with fluxes ranging from 32 to 52 mg m−2 yr−1 in 1989-1996, and from 4 to 9 mg m−2 yr−1 in 1994-2001, respectively. Our results underline the importance of multi-core studies to assess both the integrity and reliability of peat records, and the degree of homogeneity in bog accumulation. We show the usefulness of using the excess 210Pb inventory to distinguish between differential metal deposition, accumulation or anomalous peat records.  相似文献   

7.
The fate of six phthalates: dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), butyl benzyl phthalate (BBP), bis (2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP) was investigated throughout wastewater treatment processes in the wastewater treatment plant (WWTP) of Marne Aval (France). That plant treats wastewater from a highly populated area and was used as a pilot station for development of nitrification processes.In wastewater, at each step of treatment, DEHP was always the major compound (9 to 44 µg L− 1), followed by DEP (1.6 to 25 µg L− 1). Other phthalates averaged 1 µg L− 1 and DnOP remained close to the detection limit in nearly all cases.In sludge, the prevailing compound was also DEHP (72 µg g− 1) which is consistent with its tendency to get sorbed upon suspended matter (SM). DnOP came in third, in relation with its resistance to biodegradation.For the studied period, the removal efficiency of DEHP from wastewater was about 78%. That removal seemed to proceed rather from particle settling than from biodegradation. A highly significant correlation (p < 0.001) was found between DEHP and SM concentrations throughout treatment processes. The other compounds: DMP, DEP, DnBP and BBP, displayed satisfactory efficiencies ranging from 68 to over 96% for the lighter ones obviously more easily degraded.Under rainy periods, the plant discharge impact upon Marne River quality in terms of phthalate fluxes, appeared to be minor as compared to the amount brought by the storm overflows in the same area. Downstream of the WWTP discharge, DEHP concentration remained under the European norm for surface water (NQE: 1.3 µg L− 1).Our study documents the behaviour of phthalate esters throughout a WWTP which treatment device is used by 55% of the WWTP in the river Seine basin.  相似文献   

8.
The presence of 28 antibiotics in three hospital effluents, five wastewater treatment plants (WWTPs), six rivers and a drinking water storage catchment were investigated within watersheds of South-East Queensland, Australia. All antibiotics were detected at least once, with the exception of the polypeptide bacitracin which was not detected at all. Antibiotics were found in hospital effluent ranging from 0.01-14.5 μg L− 1, dominated by the β-lactam, quinolone and sulphonamide groups. Antibiotics were found in WWTP influent up to 64 μg L− 1, dominated by the β-lactam, quinolone and sulphonamide groups. Investigated WWTPs were highly effective in removing antibiotics from the water phase, with an average removal rate of greater than 80% for all targeted antibiotics. However, antibiotics were still detected in WWTP effluents in the low ng L− 1 range up to a maximum of 3.4 μg L− 1, with the macrolide, quinolone and sulphonamide antibiotics most prevalent. Similarly, antibiotics were detected quite frequently in the low ng L− 1 range, up to 2 μg L− 1 in the surface waters of six investigated rivers including freshwater, estuarine and marine samples. The total investigated antibiotic concentration (TIAC) within the Nerang River was significantly lower (p < 0.05) than all other rivers sampled. The absence of WWTP discharge to this river is a likely explanation for the significantly lower TIAC and suggests that WWTP discharges are a dominant source of antibiotics to investigated surface waters. A significant difference (p < 0.001) was identified between TIACs at surface water sites with WWTP discharge compared to sites with no WWTP discharge, providing further evidence that WWTPs are an important source of antibiotics to streams. Despite the presence of antibiotics in surface waters used for drinking water extraction, no targeted antibiotics were detected in any drinking water samples.  相似文献   

9.
We studied acid-sensitive organisms in Lake Saudlandsvatn in southernmost Norway in relation to acidification: brown trout (Salmo trutta), the caddisfly Hydropsyche siltalai and the zooplankter Daphnia longispina. The study lake was highly acidified with episodic pH depressions <5.0 in the 1970s and 1980s, and sulphur (S) deposition five times greater than the critical load. Chemical recovery following reduced deposition of S became evident in the late 1990s, when the pH increased to 5.5-6.0. By 2000, S deposition had decreased to the critical load. The lake sustained a good brown trout population until the early 1980s, but then it started to decline and nearly went extinct ten years later. Severe recruitment failures were found in most years prior to 1995, both in the inlet and outlet stream. However, since 2003 a marked recovery of the brown trout population has occurred in the lake. During the 1980s, the H. siltalai disappeared from the lake tributaries. In 1996, the species reappeared, and increased highly in abundance from 2000 and onwards. The first post-acidification record of D. longispina from net hauls in Lake Saudlandsvatn was in 2002. Palaeolimnological data confirmed their presence prior to acidification. Any significant recovery in all three organism groups coincided with an acid-neutralizing capacity (ANC) of > 20 μeq L− 1 and toxic inorganic aluminium of < 30 μg L− 1. Projections made with the MAGIC model indicate that unless further reductions in deposition of S are made, the ANC will fluctuate around the ANC survival threshold for the biological elements described. Thus, full biological recovery will not occur in the near future.  相似文献   

10.
In the early 1990s different studies highlighted the relationship between pharmaceuticals, human health and the environment. Among the emerging contaminants, antibiotics are obviously of high concern, because of their potential for inducing antibiotic resistance. In addition, natural and synthetic hormones are relevant because of their potential endocrine-disrupting effects on wildlife. This investigation focuses on the analysis of four classes of veterinary and human pharmaceuticals (sulfonamides, tetracyclines, analgesics and hormones) in surface water and wastewater in Luxembourg. The selected eleven pharmaceuticals include four sulfonamides (sulfathiazole, sulfamethoxazole, sulfadimethoxine and sulfamethazine), two tetracyclines (tetracycline and oxytetracycline), two analgesics (ibuprofen and diclofenac), and three hormones (2 naturals, estrone and β-estradiol, and a synthetic one, 17-α-ethinyl estradiol). The most innovative parts of this study are the simultaneous extraction of the above-mentioned pharmaceuticals as well as tracking their behaviour during flood events in a small river catchment. The method includes pre-concentration by solid phase extraction using Oasis® HLB (Hydrophilic Lipophilic Balance) which gave superior results compared to Chromabond® C-18EC, Chromabond® EASY and Bond Elut® PLEXA cartridges, also evaluated in this investigation. The analysis of the investigated pharmaceutical compounds is carried out by high performance liquid chromatography coupled to a triple quadrupole mass spectrometer. The limits of quantification were 1 ng L− 1, except for β-estradiol (2 ng L− 1) and 17-α-ethinyl estradiol (6 ng L− 1). Recovery rates range from 70 to 94%, with relative standard deviations between 4 and 19%. Application of this method to river concentration and flood events revealed high concentrations of ibuprofen (10-4000 ng L− 1), with highest levels during flood events, while concentrations of estrogens (1-240 ng L− 1) and sulfonamides (1-20 ng L− 1) were comparatively low.  相似文献   

11.
This work proposes an efficient combined treatment for the decontamination of a pesticide-containing wastewater resulting from phytopharmaceutical plastic containers washing, presenting a moderate organic load (COD = 1662-1960 mg O2 L−1; DOC = 513-696 mg C L−1), with a high biodegradable organic carbon fraction (81%; BOD5 = 1350-1600 mg O2 L−1) and a remaining recalcitrant organic carbon mainly due to pesticides. Nineteen pesticides were quantified by LC-MS/MS at concentrations between 0.02 and 45 mg L−1 (14-19% of DOC). The decontamination strategy involved a sequential three-step treatment: (a) biological oxidation process, leading to almost complete removal of the biodegradable organic carbon fraction; (b) solar photo-Fenton process using CPCs, enhancing the bio-treated wastewater biodegradability, mainly due to pesticides degradation into low-molecular-weight carboxylate anions; (c) and a final polishing step to remove the residual biodegradable organic carbon, using a biological oxidation process. Treatment performance was evaluated in terms of mineralization degree (DOC), pesticides content (LC-MS/MS), inorganic ions and low-molecular-weight carboxylate anions (IC) concentrations. The estimated phototreatment energy necessary to reach a biodegradable wastewater, considering pesticides and low-molecular-weight carboxylate anions concentrations, Zahn-Wellens test and BOD5/COD ratio, was only 2.3 kJUV L−1 (45 min of photo-Fenton at a constant solar UV power of 30 W m−2), consuming 16 mM of H2O2, which pointed to 52% mineralization and an abatement higher than 86% for 18 pesticides. The biological oxidation/solar photo-Fenton/biological oxidation treatment system achieved pesticide removals below the respective detection limits and 79% mineralization, leading to a COD value lower than 150 mg O2 L−1, which is in agreement with Portuguese discharge limits regarding water bodies.  相似文献   

12.
The current work aimed to compile existing information to better understand the source, fate and effects of metallic contaminants in one catchment-receiving basin system (Iron Cove) in Sydney Harbour (Australia). Copper, Pb and Zn concentrations of potential source materials, i.e. soils (mean 62, 410 and 340 µg g− 1, respectively) and road dust (mean 160, 490 and 520 µg g− 1, respectively) and in materials being transported to the estuary, i.e. in gully pots (mean 110, 200 and 260 µg g− 1 for Cu, Pb, and Zn, respectively), in bedload (mean 210, 880 and 1700 µg g− 1, respectively) and particulates in canals draining the catchment (mean 325, 290 and 1865 µg g− 1, respectively) were highly enriched. Estuarine sediments in the receiving basin are enriched 20 times over pre-anthropogenic concentrations and are toxic to benthic animals at the canal mouths. Stormwater remediation is required to reduce metal loads to the adjacent estuary.  相似文献   

13.
Ultrasonic treatment of water contaminated with ibuprofen   总被引:6,自引:0,他引:6  
The application of ultrasound (US) waves for remediation of wastewater is an area of increasing interest and promising results. The aim of this paper is to evaluate the influence of several parameters of the US process on the degradation of ibuprofen (IBP), a widely used non-steroidal anti-inflammatory recalcitrant drug found in water. Applied US power, dissolved gas, pH and initial concentration of IBP were the parameters investigated under sonication (300 kHz).Ultrasound increased the degradation of IBP from 30 to 98% in 30 min. Initial rate of IBP degradation was evaluated in the range of 1.35 and 6.1 μmol L−1 min−1 for initial concentrations of 2 to 21 mg L−1 or 9.7 μmol L−1 to 101 μmol L−1, respectively. Under air and oxygen the degradation rate of IBP was 4 μmol L−1 min−1 being higher than that when argon was used. The most favorable degradation pH was acidic media. Complete removal of IBP was achieved but some dissolved organic carbon (DOC) remained in solution showing that long-lived intermediates were recalcitrant to the US irradiation. However, chemical and biological oxygen demands (COD and BOD5) indicated that the process oxidize the ibuprofen compound to biodegradable substances removable in a subsequent biological step.  相似文献   

14.
Gradients in phosphorus (P) removal and storage were investigated over 6 years using mesocosms (each consisting of three tanks in series) containing submerged aquatic vegetation (SAV) grown on muck and limerock (LR) substrates. Mean inflow total P concentrations (TP) of 32 μg L−1 were reduced to 15 and 17 μg L−1 in the muck and LR mesocosms, respectively. Mesocosm P loading rates (mean = 1.75 g m−2 year−1) varied widely during the study and were not correlated with outflow TP, which instead varied seasonally with lowest monthly mean values in December and January.The mesocosms initially were stocked with Najas guadalupensis, Ceratophyllum demersum, and Chara zeylanica, but became dominated by C. zeylanica. At the end of the study, highest vegetative biomass (1.1 and 1.4 kg m−2 for muck and LR substrates) and tissue P content (1775 and 1160 mg kg−1) occurred in the first tank in series, and lowest biomass (1.0 and 0.2 kg m−2) and tissue P (147 and 120 mg kg−1) in the third tank. Sediment accretion rates (2.5, 1.9 and 0.9 cm yr−1 on muck substrates), accrued sediment TP (378, 309 and 272 mg kg−1), and porewater soluble reactive P (SRP) concentrations (40, 6 and 4 μg L−1) in the first, second and third tanks, respectively, exhibited a similar decreasing spatial trend. Plant tissue calcium (Ca) near mesocosm inflow (19-30% dry weight) and outflow (23-26%) were not significantly different, and sediment Ca was also similar (range of 24 to 28%) among sequential tanks.Well-defined vegetation and sediment enrichment gradients developed in SAV wetlands operated under low TP conditions. While the mesocosm data did not reflect deterioration in treatment performance over 6 years, accumulation of P-enriched sediments near the inflow could eventually compromise hydraulic storage and P removal effectiveness of these shallow systems.  相似文献   

15.
This paper reviews 17 measures to reduce phosphorus leakage from Swedish agriculture to surface waters. Our aim is to evaluate the possible contribution from agriculture to achieve environmental goals including the Baltic Sea Action Plan. Using a regional approach integrating the variability in field specific characteristics, typical costs and national potential for the included measures may be estimated without identifying, e.g., suitable individual fields for implementation. The result may be helpful to select suitable measures but may also influence the design of environmental targets before they are determined.We find that the cheapest measures are reduced phosphorus content in animal food and fertilizer application supervision in pig farms, both measures with annual potentials of around 50 t each, and costs of €7 to €11 kg− 1 yr− 1. The total potential of the listed measures is an annual phosphorus reduction to surface waters of 242 t. If the most expensive measures are excluded (> €1000 kg− 1 yr− 1) and including retention in lakes the phosphorus transport to the sea could be reduced by 165 t yr− 1. This amount can be compared with the Swedish commitment in the Baltic Sea Action Plan (BSAP) to reduce input to the Baltic Proper by 290 t yr− 1.  相似文献   

16.
Nitrogen inputs into surface waters from diffuse sources are still unduly high and the assessment of mitigation measures is associated with large uncertainties. The objective of this paper is to investigate selected agricultural management scenarios on nitrogen loads and to assess the impact of differing catchment characteristics in central Germany. A new modelling approach, which simulates spatially distributed N-transport and transformation processes in soil and groundwater, was applied to three meso scale catchments with strongly deviating climate, soil and topography conditions. The approach uses the integrated modelling framework JAMS to link an agro-ecosystem, a rainfall-runoff and a groundwater nitrogen transport model. Different agricultural management measures with deviating levels of acceptance were analysed in the three study catchments.N-leaching rates in all three catchments varied with soil type, the lowest leaching rates being obtained for loess soil catchment (18.5 kg nitrate N ha− 1 yr− 1) and the highest for the sandy soils catchment (41.2 kg nitrate N ha− 1 yr− 1). The simulated baseflow nitrogen concentrations varied between the catchments from 1 to 6 mg N l− 1, reflecting the nitrogen reduction capacity of the subsurfaces. The management scenarios showed that the highest N leaching reduction could be achieved by good site-adapted agricultural management options. Nitrogen retention in the subsurface did not alter the ranking of the management scenarios calculated as losses from the soil zone. The reduction effect depended strongly on site specific conditions, especially climate, soil variety and the regional formation of the crop rotations.  相似文献   

17.
Biocide-containing anti-fouling paints are regulated and approved according to the added active ingredients, such as Cu. Biocide-free paints are considered to be less environmentally damaging and do not need an approval. Zn, a common ingredient in paints with the potential of causing adverse effects has received only minor attention. Laboratory experiments were conducted in artificial brackish seawater (ASW) and natural brackish seawater (NSW) to quantify release rates of Cu and Zn from biocide-containing and biocide-free labeled eroding anti-fouling paints used on commercial vessels as well as leisure boats. In addition, organisms from three trophic levels, the crustacean Nitocra spinipes, the macroalga Ceramium tenuicorne and the bacteria Vibrio fischeri, were exposed to Cu and Zn to determine the toxicity of these metals. The release rate of Cu in NSW was higher from the paints for professional use (3.2-3.6 µg cm2 d− 1) than from the biocide leaching leisure boat paint (1.1 µg cm2 d− 1). Biocide-free paints did leach considerably more Zn (4.4-8.2 µg cm2 d− 1) than biocide-containing leisure boat paint (3.0 µg cm2 d− 1) and ship paints (0.7-2.0 µg cm2 d− 1). In ASW the release rates of both metals were notably higher than in NSW for most tested paints. The macroalga was the most sensitive species to both Cu (EC50 = 6.4 µg l− 1) and Zn (EC50 = 25 µg l− 1) compared to the crustacean (Cu, LC50 = 2000 µg l− 1 Zn, LC50 = 890 µg l− 1), and the bacteria (Cu, EC50 = 800 µg l− 1 and Zn, EC50 = 2000 µg l− 1). The results suggest that the amounts of Zn and Cu leached from anti-fouling paints may attain toxic concentrations in areas with high boat density. To fully account for potential ecological risk associated with anti-fouling paints, Zn as well as active ingredients should be considered in the regulatory process.  相似文献   

18.
The study focuses on the role of the fired clay brick making industry (BMI) on deforestation and greenhouse gas (GHG) emissions in Sudan. The BMI is based on numerous kilns that use biomass fuel, mainly wood which is largely harvested unsustainably. This results in potential deforestation and land degradation. Fuelwood consumption data was collected using interviews and questionnaires from 25 BMI enterprises in three administrative regions, namely Khartoum, Kassala and Gezira. Annual fuelwood consumption data (t dm yr− 1) was converted into harvested biomass (m3) using a wood density value of 0.65 t dm m− 3. For annual GHG estimations, the methodological approach outlined by the Intergovernmental Panel on Climate Change (IPCC) was used. According to our results, the annual deforestation associated with the BMI for the whole of Sudan is 508.4 × 103 m3 of wood biomass, including 267.6 × 103 m3 round wood and 240.8 × 103 m3 branches and small trees. Total GHG emissions from the Sudanese BMI are estimated at 378 028 t CO2, 15 554 t CO, 1778 t CH4, 442 t NOX, 288 t NO and 12 t N2O per annum. The combined CO2-equivalent (global warming potential for 100-year time horizon) of the GHG emissions (excluding NOX and NO) is 455 666 t yr− 1. While these emissions form only a small part of Sudan's total GHG emissions, the associated deforestation and land degradation is of concern and effort should be made for greater use of sustainable forest resources and management.  相似文献   

19.
Coastal sand dunes are considered to be threatened by the atmospheric deposition of nitrogen (N); however, experimental investigations of the effects of N deposition on dune vegetation and soil using realistic N loads and sites with low background deposition are scarce. This study reports the effects of low levels of fertilisation with N and phosphorus (P) on the vegetation, above-ground biomass, plant tissue chemistry and soil chemistry of fixed dune grasslands. In addition, the impacts of grazing management and its potential to mitigate adverse effects of N fertilisation were examined. Four N treatments (unwatered control, watered control, + 7.5 kg ha− 1 year− 1, + 15 kg ha− 1 year− 1) were combined with three grazing treatments (ungrazed, rabbit grazed, rabbit and pony grazed). In a separate experiment, effects of fertilisation with both N (15 kg ha− 1 year− 1) and P (20 kg ha− 1 year− 1) were investigated. Vegetation composition was assessed using the point quadrat method. Above-ground biomass, sward heights, tissue N and P concentrations and soil chemical parameters were also measured. After two years, N addition resulted in greater amounts of total above-ground biomass, bryophyte biomass and changes in bryophyte tissue chemistry. No effects on vegetation composition, sward height or soil parameters occurred. Fertilisation with both nutrients had a greater impact on above-ground biomass, sward heights and sward structure than N addition alone. The grazing treatments differed in their species composition. The changes observed after only two years of fertilisation may lead to community changes over longer time scales. Effects were observed even under heavy grazing with phosphorus limitation. Therefore, the upper critical load for N for dune grasslands may be below the previously proposed 20 kg ha− 1 year− 1 and grazing may not mitigate all negative effects of N deposition.  相似文献   

20.
Land application of municipal biosolids can be a source of environmental contamination by pharmaceutical and personal care products (PPCPs). This study examined PPCP concentrations/temporally discrete mass loads in agricultural tile drainage systems where two applications of biosolids had previously taken place. The field plots received liquid municipal biosolids (LMB) in the fall of 2005 at an application rate of ∼ 93,500 L ha− 1, and a second land application was conducted using dewatered municipal biosolids (DMB) applied at a rate of ∼ 8 Mt dw ha− 1 in the summer of 2006. The DMB land application treatments consisted of direct injection (DI) of the DMB beneath the soil surface at a nominal depth of ∼ 0.11 m, and surface spreading (SS) plus subsequent tillage incorporation of DMB in the topsoil (∼ 0.10 m depth). The PPCPs examined included eight pharmaceuticals (acetaminophen, fluoxetine, ibuprofen, gemfibrozil, naproxen, carbamazepine, atenolol, sulfamethoxazole), the nicotine metabolite cotinine, and two antibacterial personal care products triclosan and triclocarban. Residues of naproxen, cotinine, atenolol and triclosan originating from the fall 2005 LMB application were detected in tile water nearly nine months after application (triclocarban was not measured in 2005). There were no significant differences (p > 0.05) in PPCP mass loads among the two DMB land application treatments (i.e., SS vs. DI); although, average PPCP mass loads late in the study season (> 100 days after application) were consistently higher for the DI treatment relative to the SS treatment. While the concentration of triclosan (∼ 14,000 ng g− 1 dw) in DMB was about twice that of triclocarban (∼ 8000 ng g− 1 dw), the average tile water concentrations for triclosan were much higher (43 ± 5 ng L− 1) than they were for triclocarban (0.73 ± 0.14 ng L− 1). Triclosan concentrations (maximum observed in 2006 ∼ 235 ng L− 1) in tile water resulting from land applications may warrant attention from a toxicological perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号