首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
On-road measurement is an effective method to investigate real-world emissions generated from vehicles and estimate the difference between engine certification cycles and real-world operating conditions. This study presents the results of on-road measurements collected from urban buses which propelled by diesel engine in Beijing city. Two widely used Euro III emission level buses and two Euro IV emission level buses were chosen to perform on-road emission measurements using portable emission measurement system (PEMS) for gaseous pollutant and Electric Low Pressure Impactor (ELPI) for particulate matter (PM) number emissions. The results indicate that considerable discrepancies of engine operating conditions between real-world driving cycles and engine certification cycles have been observed. Under real-world operating conditions, carbon monoxide (CO) and hydrocarbon (HC) emissions can easily meet their respective regulations limits, while brake specification nitrogen oxide (bsNOx) emissions present a significant deviation from its corresponding limit. Compared with standard limits, the real-world bsNOx emission of the two Euro III emission level buses approximately increased by 60% and 120% respectively, and bsNOx of two Euro IV buses nearly twice standard limits because Selective Catalytic Reduction (SCR) system not active under low exhaust temperature. Particle mass were estimated via particle size distribution with the assumption that particle density and diameter is liner. The results demonstrate that nanometer size particulate matter make significant contribution to total particle number but play a minor role to total particle mass. It is suggested that specific certified cycle should be developed to regulate bus engines emissions on the test bench or use PEMS to control the bus emissions under real-world operating conditions.  相似文献   

3.
Compliance with air quality standards requires control of source emissions: fine exhaust particles are already subject to regulation but vehicle fleets increase whilst the non-exhaust emissions are totally uncontrolled. Emission inventories are scarce despite their suitability for researchers and regulating agencies for managing air quality and PM reduction measures. Only few countries in Europe proposed street cleaning as a possible control measure, but its effectiveness is still far to be determined.This study offers first estimates of Real-world Emission Factors for PM10 and brake-wear elements and the effect on PM10 concentrations induced by intense street cleaning trials.A straightforward campaign was carried out in the city of Barcelona with hourly elemental composition of fine and coarse PM to detect any short-term effect of street cleaning on specific tracers of non-exhaust emissions. Samples were analyzed by Particle Induced X-Ray Emission.Real-world Emission Factor for PM10 averaged for the local fleet resulted to be 97 mg veh− 1 km− 1. When compared to other European studies, our EF resulted higher than what found in UK, Germany, Switzerland and Austria but lower than Scandinavian countries. For brake-related elements, total EFs were estimated, accounting for the sum of direct and resuspension emissions, in 7400, 486, 106 and 86 μg veh− 1 km− 1, respectively for Fe, Cu, Sn and Sb. In PM2.5Fe and Cu emission factors were respectively 4884 and 306 μg veh− 1 km− 1.Intense street cleaning trials evidenced a PM10 reduction at kerbside of 3 μg m− 3 (mean daily levels of 54 μg m− 3), with respect to reference stations. It is important to remark that such benefit could only be detected in small time-integration periods (12:00-18:00) since in daily values this benefit was not noticed. Hourly PM elemental monitoring allowed the identification of mineral and brake-related metallic particles as those responsible of the PM10 reduction.  相似文献   

4.
Addition of different forms of nitrogen fertilizer to cultivated soil is known to affect carbon dioxide (CO2) and nitrous oxide (N2O) emissions. In this study, the effect of urea, wastewater sludge and vermicompost on emissions of CO2 and N2O in soil cultivated with bean was investigated. Beans were cultivated in the greenhouse in three consecutive experiments, fertilized with or without wastewater sludge at two application rates (33 and 55 Mg fresh wastewater sludge ha− 1, i.e. 48 and 80 kg N ha− 1 considering a N mineralization rate of 40%), vermicompost derived from the wastewater sludge (212 Mg ha− 1, i.e. 80 kg N ha− 1) or urea (170 kg ha− 1, i.e. 80 kg N ha− 1), while pH, electrolytic conductivity (EC), inorganic nitrogen and CO2 and N2O emissions were monitored. Vermicompost added to soil increased EC at onset of the experiment, but thereafter values were similar to the other treatments. Most of the NO3 was taken up by the plants, although some was leached from the upper to the lower soil layer. CO2 emission was 375 C kg ha− 1 y− 1 in the unamended soil, 340 kg C ha− 1 y− 1 in the urea-amended soil and 839 kg ha− 1 y− 1 in the vermicompost-amended soil. N2O emission was 2.92 kg N ha− 1 y− 1 in soil amended with 55 Mg wastewater sludge ha− 1, but only 0.03 kg N ha− 1 y− 1 in the unamended soil. The emission of CO2 was affected by the phenological stage of the plant while organic fertilizer increased the CO2 and N2O emission, and the yield per plant. Environmental and economic implications must to be considered to decide how many, how often and what kind of organic fertilizer could be used to increase yields, while limiting soil deterioration and greenhouse gas emissions.  相似文献   

5.
Air pollution surveys of ten selected monoaromatic hydrocarbons (MAHCs) were conducted in buses and bus stations in Hangzhou, China. The mean concentrations of MAHCs in the air of buses and bus stations were 95.9 and 36.5 μg/m3, respectively, of which toluene was the highest in all the sampling sites. Mean concentrations of all MAHCs in buses were statistically higher than those nearby bus stations (p < 0.05). MAHCs concentrations in buses largely depend on vehicle conditions (including vehicle type, fuel type, interior decoration, etc.) and traffic conditions (mainly traffic density). Among the investigated buses, microbuses had the highest MAHCs level, while electric buses had the lowest. Buses driven in downtown had the highest MAHCs level, followed by those in suburban areas and tourist areas. The mean concentration ratio of toluene to benzene was 2.1 ± 0.9, indicating that vehicle emission was the dominant source of MAHCs. Interior decorations, such as painting and surface coating, could also contribute to the MAHCs in the buses. The mean lifetime carcinogenic risks for passengers and bus drivers were 1.11 × 10− 5 and 4.00 × 10− 5, respectively, which were way above the limit set by USEPA. The health risk caused by MAHCs in bus microenvironment should be cautioned.  相似文献   

6.
This study assesses individual-vehicle molecular hydrogen (H2) emissions in exhaust gas from current gasoline and diesel vehicles measured on a chassis dynamometer. Absolute H2 emissions were found to be highest for motorcycles and scooters (141 ± 38.6 mg km− 1), approximately 5 times higher than for gasoline-powered automobiles (26.5 ± 12.1 mg km− 1). All diesel-powered vehicles emitted marginal amounts of H2 (∼ 0.1 mg km− 1). For automobiles, the highest emission factors were observed for sub-cycles subject to a cold-start (mean of 53.1 ± 17.0 mg km− 1). High speeds also caused elevated H2 emission factors for sub-cycles reaching at least 150 km h− 1 (mean of 40.4 ± 7.1 mg km− 1). We show that H2/CO ratios (mol mol− 1) from gasoline-powered vehicles are variable (sub-cycle means of 0.44-5.69) and are typically higher (mean for automobiles 1.02, for 2-wheelers 0.59) than previous atmospheric ratios characteristic of traffic-influenced measurements. The lowest mean individual sub-cycle ratios, which correspond to high absolute emissions of both H2 and CO, were observed during cold starts (for automobiles 0.48, for 2-wheelers 0.44) and at high vehicle speeds (for automobiles 0.73, for 2-wheelers 0.45). This finding illustrates the importance of these conditions to observed H2/CO ratios in ambient air. Overall, 2-wheelers displayed lower H2/CO ratios (0.48-0.69) than those from gasoline-powered automobiles (0.75-3.18). This observation, along with the lower H2/CO ratios observed through studies without catalytic converters, suggests that less developed (e.g. 2-wheelers) and older vehicle technologies are largely responsible for the atmospheric H2/CO ratios reported in past literature.  相似文献   

7.
The distribution of the solvent-extractable organic components in the fine (PM1) and coarse (PM1-10) fractions of airborne particulate was studied for the first time in Algeria. That was done during October 2006 concurrently in a big industrial district, a busy urban area, and a forest national park located in Algiers, Boumerdes, Blida, respectively, which are the three biggest provinces of Northern Algeria. Most of the organic matter identified in both particle size ranges consisted of n-alkanes and n-alkanoic acids, with minor contributions coming from polycyclic aromatic hydrocarbons (PAHs), nitrated polycyclic aromatic hydrocarbons (NPAHs), oxygenated PAHs, and other polar compounds (e.g., caffeine and nicotine). The potential emission sources of airborne contaminants were reconciled by combining the values of n-alkane carbon preference index (CPI) and selected diagnostic ratios of PAHs, calculated in both size ranges. The mean cumulative concentrations of PAHs reached 3.032 ng m− 3 at the Boumerdes site, urban, 80% of which (i.e. 2.246 ng m− 3) in the PM1 fraction, 6.462 ng m− 3 at Rouiba-Réghaia, industrial district, (5.135 ng m− 3 or 80% in PM1), and 0.512 ng m− 3 at Chréa, forested mountains (0.370 ng m− 3 or 72% in PM1). Similar patterns were shown by all organic groups, which resulted overall enriched in the fine particles at the three sites. Carcinogenic and mutagenic potencies associated to PAHs were evaluated by multiplying the concentrations of “toxic” compounds times the corresponding potency factors normalized vs. benzo(a)pyrene (BaP), and were found to be both acceptable.  相似文献   

8.
This study is aimed to investigate the combined application of fumigation methanol and a diesel oxidation catalyst for reducing emissions of an in-use diesel engine. Experiments were performed on a 4-cylinder naturally-aspirated direct-injection diesel engine operating at a constant speed of 1800 rev/min for five engine loads.The experimental results show that at low engine loads, the brake thermal efficiency decreases with increase in fumigation methanol; but at high loads, it slightly increases with increase in fumigation methanol. The fumigation method results in a significant increase in hydrocarbon (HC), carbon monoxide (CO), and nitrogen dioxide (NO2) emissions, but decrease in nitrogen oxides (NOx), smoke opacity and the particulate mass concentration. For the submicron particles, the total number of particles decreases. In all cases, there is little change in geometrical mean diameter of the particles. After catalytic conversion, the HC, CO, NO2, particulate mass and particulate number concentrations were significantly reduced at medium to high engine loads; while the geometrical mean diameter of the particles becomes larger. Thus, the combined use of fumigation methanol and diesel oxidation catalyst leads to a reduction of HC, CO, NOx, particulate mass and particulate number concentrations at medium to high engine loads.  相似文献   

9.
Ultra low sulfur diesel and two different kinds of biodiesel fuels blended with baseline diesel fuel in 5% and 20% v/v were tested in a Cummins 4BTA direct injection diesel engine, with a turbocharger and an intercooler. Experiments were conducted under five engine loads at two steady speeds (1500 rpm and 2500 rpm). The study aims at investigating the engine performance, NOx emission, smoke opacity, PM composition, PM size distribution and comparing the impacts of low sulfur content of biodiesel with ULSD on the particulate emission. The results indicate that, compared to base diesel fuel, the increase of biodiesel in blends could cause certain increase in both brake specific fuel consumption and brake thermal efficiency. Compared with baseline diesel fuel, the biodiesel blends bring about more NOx emissions. With the proportion of biodiesel increase in blends, the smoke opacity decreases, while total particle number concentration increases. Meanwhile the ULSD gives lower NOx emissions, smoke opacity and total number concentration than those of baseline diesel fuel. In addition, the percentages of SOF and sulfate in particulates increase with biodiesel in blends, while the dry soot friction decreases obviously. Compared with baseline diesel fuel, the biodiesel blends increase the total nucleation number concentration, while ULSD reduces the total nucleation number concentration effectively, although they all have lower sulfur content. It means that, for ULSD, the lower sulfur content is the dominant factor for suppressing nucleation particles formation, while for biodiesel blends, lower volatile, lower aromatic content and higher oxygen content of biodiesel are key factors for improving the nucleation particles formation. The results demonstrate that the higher NOx emission and total nucleation number concentration are considered as the big obstacles of the application of biodiesel in diesel engine.  相似文献   

10.
Tire-wear is an important source of PAHs, elemental carbon (EC) and organic carbon (OC). The emissions of these pollutants have been studied in an experimental set-up, simulating a realistic road-tire interaction (summer tire-concrete road). The large particle non-exhaust emissions (LPNE; diameter greater than 10 μm) have been evaluated over 14,500 km run of the tire. An increasing linear trend with cumulative km run was observed for emissions of PAHs and carbon. Amongst PAHs in LPNE, pyrene has been observed to be the highest (30 ± 4 mg kg− 1) followed by benzo[ghi]perylene (17 ± 2 mg kg− 1). Different fractions of EC-OC for tire-wear have been analyzed, and unlike exhaust emissions, EC1 was observed to be 99% of EC whereas more than 70% of the OC was the high temperature carbon (OC3 and OC4). The overall emission factors (mass tire− 1 km− 1) for PAHs, EC and OC from tire-wear are 378 ng tire− 1 km− 1, 1.46 mg tire− 1 km− 1 and 2.37 mg tire− 1 km− 1 for small cars.  相似文献   

11.
European regulation for Euro 5/6 light duty emissions introduced the measurement of non-volatile particles with diameter > 23 nm. The volatile phase is removed by using a heated dilution stage (150 °C) and a heated tube (at 300-400 °C). We investigated experimentally the removal efficiency for volatile species of the specific protocol by conducting measurements with two Euro 3 diesel light duty vehicles, a Euro 2 moped, and a Euro III heavy duty vehicle with the system's heaters on and off. The particle number distributions were measured with a Scanning Mobility Particle Sizer (SMPS) and a Fast Mobility Particle Sizer (FMPS). An Aerosol Mass Spectrometer (AMS) was used to identify the non-refractory chemical composition of the particles. A Multi-Angle Absorption Photometer (MAAP) was used to measure the black carbon concentration. The results showed that the condensed material in the accumulation mode (defined here as particles in the diameter range of ∼ 50-500 nm) was removed with an efficiency of 50-90%. The (volatile) nucleation mode was also completely evaporated or was decreased to sizes < 23 nm; thus these particles wouldn't be counted from the particle counter, indicating the robustness of the protocol.  相似文献   

12.
Annual paddy rice-winter wheat rotation constitutes one of the typical cropping systems in southeast China, in which various water regimes are currently practiced during the rice-growing season, including continuous flooding (F), flooding-midseason drainage-reflooding (F-D-F), and flooding-midseason drainage-reflooding and moisture but without waterlogging (F-D-F-M). We conducted a field experiment in a rice-winter wheat rotation system to gain an insight into the water regime-specific emission factors and background emissions of nitrous oxide (N2O) over the whole annual cycle. While flooding led to an unpronounced N2O emission during the rice-growing season, it incurred substantial N2O emission during the following non-rice season. During the non-rice season, N2O fluxes were, on average, 2.61 and 2.48 mg N2O-N m2 day− 1 for the 250 kg N ha− 1 applied plots preceded by the F and F-D-F water regimes, which are 56% and 49% higher than those by the F-D-F-M water regime, respectively. For the annual rotation system experienced by continuous flooding during the rice-growing season, the relationship between N2O emission and nitrogen input predicted the emission factor and background emission of N2O to be 0.87% and 1.77 kg N2O-N ha− 1, respectively. For the plots experienced by the water regimes of F-D-F and F-D-F-M, the emission factors of N2O averaged 0.97% and 0.85%, with background N2O emissions of 2.00 kg N2O-N ha− 1 and 1.61 kg N2O-N ha− 1 for the annual rotation system, respectively. Annual direct N2O-N emission was estimated to be 98.1 Gg yr− 1 in Chinese rice-based cropping systems in the 1990s, consisting of 32.3 Gg during the rice-growing season and 65.8 Gg during the non-rice season, which accounts for 25-35% of the annual total emission from croplands in China.  相似文献   

13.
Experiments were performed to study the airflow rates (AFRs) in a naturally ventilated building through four summer seasons and three winter seasons. The AFRs were determined using heat balance (HB), tracer gas technique (TGT) and CO2-balance as averages of the values of all experiments carried out through the different seasons. The statistical analyses were correlation analysis, regression model and t-test. Continuous measurements of gaseous concentrations (NH3, CH4, CO2 and N2O) and temperatures inside and outside the building were performed. The HB showed slightly acceptable results through summer seasons and unsatisfactory results through winter seasons. The CO2-balance showed unexpected high differences to the other methods in some cases. The TGT showed reliable results compared to HB and CO2-balance. The AFRs, subject to TGT, were 0.12 m3 s−1 m−2, 1.15 m3 s−1 cow−1, 0.88 m3 s−1 LU−1, 56 h−1, 395 m3 s−1 and 470 kg s−1 through summer seasons, and 0.08 m3 s−1 m−2, 0.83 m3 s−1 cow−1, 0.64 m3 s−1 LU−1 39 h−1, 275 m3 s−1 and 328 kg s−1 through winter seasons. The AFRs are not independent values, rather they were estimated for specific reference values, which are: area, cow and LU as well as rates. The emission rates through summer seasons, subject to TGT, were 9.4, 40, 3538 and 2.3 g h−1 cow−1; and through winter seasons were 4.8, 19, 2332 and 2.6 g h−1 cow−1, for NH3, CH4, CO2 and N2O, respectively.  相似文献   

14.
Biochemical responses in bivalve mollusks are commonly employed in environmental studies as biomarkers of aquatic contamination. The present study evaluated the possible influence of salinity (35, 25, 15 and 9 ppt) in the biomarker responses of Crassostrea gigas oysters exposed to diesel at different nominal concentrations (0.01, 0.1 and 1 mL.L− 1) using a semi-static exposure system. Salinity alone did not resulted in major changes in the gill's catalase activity (CAT), glutathione S-transferase activity (GST) and lipid peroxidation levels (measured as malondialdehyde, MDA), but influenced diesel related responses. At 25 ppt salinity, but not at the other salinity levels, oysters exposed to diesel showed a strikingly positive concentration-dependent GST response. At 25 ppt and 1 mL.L− 1 diesel, the GST activity in the gills remained elevated, even after one week of depuration in clean water. The increased MDA levels in the oysters exposed to diesel comparing to control groups at 9, 15 and 35 ppt salinities suggest the occurrence of lipid peroxidation in those salinities, but not at 25 ppt salinity. The MDA quickly returned to basal levels after 24 h of depuration. CAT activity was unaltered by the treatments employed. High toxicity for 1 mL.L− 1 diesel was observed only at 35 ppt salinity, but not in the other salinities. Results from this study strongly suggest that salinity influences the diesel related biomarker responses and toxicity in C. gigas, and that some of those responses remain altered even after depuration.  相似文献   

15.
The temporal variability of nitrate transport was monitored continuously in a large agricultural catchment, the 1110 km2 Save catchment in south-west France, from January 2007 to June 2009. The overall aim was to analyse the temporal transport of nitrate through hydrological response during flood events in the catchment. Nitrate loads and hysteresis were also analysed and the relationships between nitrate and hydro-climatological variables within flood events were determined. During the study period, 19 flood events were analysed using extensive datasets obtained by manual and automatic sampling. The maximum NO3 concentration during flood varied from 8.2 mg l−1 to 41.1 mg l−1 with flood discharge from 6.75 m3 s−1 to 112.60 m3 s−1. The annual NO3 loads in 2007 and 2008 amounted to 2514 t and 3047 t, respectively, with average specific yield of 2.5 t km−12 yr−1. The temporal transport of nitrate loads during different seasonal flood events varied from 12 t to 909 t. Nitrate transport during flood events amounted to 1600 t (64% of annual load; 16% of annual duration) in 2007 and 1872 t (62% of annual load; 20% of annual duration) in 2008. The level of peak discharge during flood events did not control peak nitrate concentrations, since similar nitrate peaks were produced by different peak discharges. Statistically strong correlations were found between nitrate transport and total precipitation, flood duration, peak discharge and total water yield. These four variables may be the main factors controlling nitrate export from the Save catchment. The relationship between nitrate and discharge (hysteresis patterns) investigated through flood events in this study was mainly dominated by anticlockwise behaviour.  相似文献   

16.
Mercury emission to atmosphere from primary Zn production in China   总被引:1,自引:0,他引:1  
Emissions of mercury (Hg) to air have regional and global impacts through long range transport in the atmosphere. Primary Zn production is regarded as an important anthropogenic Hg source in China, but research on its Hg emission is limited. To gain a better understanding of Hg emissions from Zn production activities in China, field investigations at four industrial-scale Zn production plants using electrostatic process with Hg removal (HP-WR), electrostatic process without Hg removal (HP-WOR), retort Zn production (RZ), imperial smelting process (ISP), and one artisanal Zn smelting process (AZ) were carried out. In the investigation, Hg emission factors are defined as how much Hg was emitted to the atmosphere per ton Zn produced during various Zn production methods and were estimated by using mass balance method. The results showed that the estimated Hg emission factors of Zn production were 5.7 ± 4.0 g Hg t1 Zn for HP-WR, 31 ± 22 g Hg t1 Zn for HP-WOR, 34 ± 71 g Hg t1 Zn for RZ, 122 ± 122 g Hg t1 Zn g t1 for ISP, and 75 ± 115 g Hg t1 Zn for AZ. Approximately 80.7-104.2 t year1 of Hg was emitted to atmosphere from primary Zn production during the period of 2002-2006 in China.  相似文献   

17.
Atmospheric ammonia has been shown to degrade regional air quality and affect environmental health. In-situ measurements of ammonia are needed to determine how ambient concentrations vary in different ecosystems and the extent to which emission sources contribute to those levels. The objective of this study was to measure and compare ammonia concentrations in two Tennessee Valley (USA) ecosystems: a forested rural area and a metropolitan site adjacent to a main transportation route. Integrated samples of atmospheric ammonia were collected with annular denuder systems for ~ 4 weeks during the summer of 2009 in both ecosystems. Ancillary measurements of meteorological variables, such as wind direction and precipitation, were also conducted to determine any relationships with ammonia concentration. Measurements in the two ecosystems revealed ammonia concentrations that were mostly representative of background levels. Arithmetic means were 1.57 ± 0.68 μg m− 3 at the metropolitan site and 1.60 ± 0.77 μg m− 3 in the forest. The geometric mean concentrations for both sites were ~ 1.46 μg m− 3. Wind direction, and to a lesser extent air temperature and precipitation, did influence measured concentrations. At the metropolitan site, ammonia concentrations were slightly higher in winds emanating from the direction of the interstate highway. Meteorological variables, such as wind direction, and physical factors, such as topography, can affect measurement of ambient ammonia concentrations, especially in ecosystems distant from strong emission sources. The 12-h integrated sampling method used in this study was unable to measure frequent changes in ambient ammonia concentrations and illustrates the need for measurements with higher temporal resolution, at least ~ 1-2 h, in a variety of diverse ecosystems to determine the behavior of atmospheric ammonia and its environmental effects.  相似文献   

18.
Atmospheric concentrations and gas-particle partition coefficients were determined for polycyclic aromatic hydrocarbons (PAHs) in the atmosphere of Zonguldak, Turkey between May 2007 and April 2008. Total concentrations of PAHs ranged from 0.52 ng m− 3 to 636 ng m− 3 in the particle phase and from 5.60 ng m− 3 to 725 ng m− 3 in the gas phase. The annual mean concentrations of PAHs in the particle and gas phase were found to be 114 ng m− 3 and 184 ng m− 3, respectively. Significant seasonal variations of particle and gas phase PAH concentrations were observed with higher levels during cold period. The distribution of PAHs between the particle and gas phase was investigated and it was found that three ring PAHs were associated primarily with the gas phase, four ring PAHs were distributed almost equally between the two phases and five and six ring PAHs were mainly associated with the particle phase. Gas-particle partition coefficients (Kp) of PAHs have been calculated and correlated with their subcooled liquid vapor pressures (PLº). The slopes (mr) varied from − 0.63 to − 0.23 were far from the theoretical value (−1) due to the short distance between the sampling point and the emission sources. The relationships between temperature and gas phase partial pressures of PAHs were examined using the Clausius-Clapeyron equation and the obtained positive slopes indicated that PAH concentrations increased with decreasing air temperature as a result of high dominance of local emissions.  相似文献   

19.
Cassidy DP  Belia E 《Water research》2005,39(19):4817-4823
The formation and performance of granular sludge was studied in an 8 l sequencing batch reactor (SBR) treating an abattoir (slaughterhouse) wastewater. Influent concentrations averaged 1520 mg l−1 volatile suspended solids (VSS), 7685 mg l−1 Chemical oxygen demand (COD), 1057 mg l−1 total kjeldahl nitrogen (TKN), 217 mg l−1 total P. The COD loading was 2.6 kg m−3 d−1. The SBR was seeded with flocculating sludge from a SBR with an 1 h settle time, but granules developed within 4 days by reducing the settle time to 2 min. The SBR cycle also had 120 min mixed (anaerobic) fill, 220 min aerated react, and 18 min draw/idle. The granules had a mean diameter of 1.7 mm, a specific gravity of 1.035, a density of 62 g VSS l−1, a zone settling velocity (ZSV) of 51 m h−1, and a sludge volume index (SVI) of 22 ml g−1. Without optimizing process conditions, removal of COD and P were over 98%, and removal of N and VSS were over 97%. Nitrification and denitrification occurred simultaneously during react. The results indicate that conventional SBRs treating wastewaters with flocculating sludge can be converted to granular SBRs by reducing the settle time.  相似文献   

20.
We analyzed benthic fluxes of inorganic nitrogen, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) rates in hypolimnetic sediments of lowland lakes. Two neighbouring mesotrophic (Ca' Stanga; CS) and hypertrophic (Lago Verde; LV) lakes, which originated from sand and gravel mining, were considered. Lakes are affected by high nitrate loads (0.2-0.7 mM) and different organic loads. Oxygen consumption, dissolved inorganic carbon, methane and nitrogen fluxes, denitrification and DNRA were measured under summer thermal stratification and late winter overturn.Hypolimnetic sediments of CS were a net sink of dissolved inorganic nitrogen (−3.5 to −4.7 mmol m−2 d−1) in both seasons due to high nitrate consumption. On the contrary, LV sediments turned from being a net sink during winter overturn (−3.5 mmol m−2 d−1) to a net source of dissolved inorganic nitrogen under summer conditions (8.1 mmol m−2 d−1), when significant ammonium regeneration was measured at the water-sediment interface. Benthic denitrification (0.7-4.1 mmol m−2 d−1) accounted for up to 84-97% of total NO3 reduction and from 2 to 30% of carbon mineralization. It was mainly fuelled by water column nitrate. In CS, denitrification rates were similar in winter and in summer, while in LV summer rates were 4 times lower. DNRA rates were generally low in both lakes (0.07-0.12 mmol m−2 d−1). An appreciable contribution of DNRA was only detected in the more reducing sediments of LV in summer (15% of total NO3 reduction), while during the same period only 3% of reduced NO3 was recycled into ammonium in CS.Under summer stratification benthic denitrification was mainly nitrate-limited due to nitrate depletion in hypolimnetic waters and parallel oxygen depletion, hampering nitrification. Organic enrichment and reducing conditions in the hypolimnetic sediment shifted nitrate reduction towards more pronounced DNRA, which resulted in the inorganic nitrogen recycling and retention within the bottom waters. The prevalence of DNRA could favour the accumulation of mineral nitrogen with detrimental effects on ecosystem processes and water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号