首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of high level ozone concentrations using nonparametric methods   总被引:1,自引:0,他引:1  
Controlling emissions of air pollutants and establishing air quality objectives to improve and protect ambient air quality are very important tasks of Governments. Ozone (O3), one of those pollutants of concern, is not emitted directly into the atmosphere, but is a secondary pollutant produced by reaction between nitrogen dioxide (NO2), hydrocarbons and sunlight. High levels of ozone can produce harmful effects on human health and the environment in general. Therefore, the study of extreme values of ozone represents an important topic of research in environmental problems. Classical extreme value theory has been usually used in air-pollution studies. It consists of fitting a parametric generalized extreme value (GEV) distribution to a data set of extreme values and using the estimated distribution to compute quantities like the probability of exceedance, the quantiles, the return levels or the mean return periods. In this paper, we propose nonparametric methods to estimate those quantities. Additionally, nonparametric estimators of the trends of very high values of ozone are proposed. The nonparametric estimators are applied to real samples of maximum ozone values obtained from several monitoring stations belonging to the Automatic Urban and Rural Network (AURN) from the UK. Results show that nonparametric estimators work satisfactorily, generally outperforming the behaviour of classical parametric estimators.  相似文献   

2.
Passive ambient air sampling for nitrogen dioxide (NO2) and volatile organic compounds (VOCs) was conducted at 25 school and two compliance sites in Detroit and Dearborn, Michigan, USA during the summer of 2005. Geographic Information System (GIS) data were calculated at each of 116 schools. The 25 selected schools were monitored to assess and model intra-urban gradients of air pollutants to evaluate impact of traffic and urban emissions on pollutant levels. Schools were chosen to be statistically representative of urban land use variables such as distance to major roadways, traffic intensity around the schools, distance to nearest point sources, population density, and distance to nearest border crossing. Two approaches were used to investigate spatial variability. First, Kruskal-Wallis analyses and pairwise comparisons on data from the schools examined coarse spatial differences based on city section and distance from heavily trafficked roads. Secondly, spatial variation on a finer scale and as a response to multiple factors was evaluated through land use regression (LUR) models via multiple linear regression. For weeklong exposures, VOCs did not exhibit spatial variability by city section or distance from major roads; NO2 was significantly elevated in a section dominated by traffic and industrial influence versus a residential section. Somewhat in contrast to coarse spatial analyses, LUR results revealed spatial gradients in NO2 and selected VOCs across the area. The process used to select spatially representative sites for air sampling and the results of coarse and fine spatial variability of air pollutants provide insights that may guide future air quality studies in assessing intra-urban gradients.  相似文献   

3.
Ozone represents the main atmospheric pollutant in the São Paulo Metropolitan Area (SPMA). In this region, its concentration exceeds the national air quality standards for several days out of the year. Ozone is a secondary pollutant and is a product of VOCs, NOx, and sunlight. Thus, it is very difficult to elaborate efficient strategies for its reduction. Computational simulations may provide an interesting alternative to evaluate the many factors that affect ozone formation. In this study, the trajectory model OZIPR was used together with the SAPRC chemical mechanism to determine the incremental reactivity scale for VOCs in the SPMA. VOC input data were obtained from two campaigns that were performed in the studied area in 2006. Values for CO, NOx, and meteorological parameters were obtained by automatic monitors. Five base-cases were created to verify the variation in maximum ozone concentration and thus determine the ozone formation potential of each VOC. NOx and VOC emissions were independently and simultaneously reduced by 5, 10, 20, and 30% to verify variations in ozone formation. With the simulator output data, ozone isopleths charts were generated for the city of São Paulo. Analysis of the obtained results shows that the most frequent compounds found among the ten main ozone precursors in São Paulo, using the reactivity scales created from the five base-cases, were: formaldehyde, acetaldehyde, propene, isoprene, cis-2-butene, and trans-2-butene, with formaldehyde being always the main ozone precursor compound. The simulations also show that an efficient strategy to decrease ozone concentrations in the SPMA would be to reduce total VOC emissions. The same strategy is not possible for NOx, as the reduction of these pollutants would increase ozone concentrations.  相似文献   

4.
This study presents real-time concentrations of traffic-related air pollutants during 499 trips conducted by 50 Parisian taxi drivers from PUF-TAXI project. Ultrafine particles (UFP), black carbon (BC), and nitrogen dioxide (NO2)/carbon monoxide (CO) were measured inside vehicles by Diffusion Size Classifier Miniature®, microAeth®, and Gas-Pro®, respectively, for nine hours. Vehicle/trip data characteristics were collected by questionnaires and on ambient conditions by monitoring stations. The associations between pollutant levels and their potential determinants were analyzed using generalized estimating equation model. Determinants of in-vehicle pollutants levels were identified: (1) ambient factors (meteorology and ambient pollution)—affecting BC, NO2, and CO; (2) vehicle characteristics—affecting all pollutants; and (3) trip-related driving habits—affecting UFP, BC, and CO. We highlight that commuters can, therefore, avoid high in-vehicle air pollutant concentrations mainly by (1) closing windows and activating air-conditioning under air recirculation mode in congested traffic; (2) smooth driving; and (3) maintaining cabin air filters.  相似文献   

5.
The Environment Protection Department of Hong Kong has been using an air pollution index (API) to report the status of ambient air quality since 1995. Such an index system was first developed by the USA Environmental Protection Authority. The API compares five main air pollutants, i.e. sulfur dioxide (SO2), respirable suspended particulates (RSP), nitrogen dioxide (NO2), carbon monoxide (CO) and Ozone (O3) as sub-indexes, which are calculated separately from a segmented linear function that transforms ambient pollutants concentrations into a normalized scale extending from 0 to 500. The resultant pollution level is described by the maximal value of these five sub-indexes. The limitation of this API system is that it considers only one pollutant with the maximum value at a time but reflects other pollutants concurrently. In this study, a revised air quality index (RAPI) is proposed based on the entropy function, which combines the effect of all pollutants on public health. The design of the revised index is based on database of air pollutants collected at two air quality monitoring stations in Hong Kong, i.e. a roadside station in Mong Kok and a general station in Sha Tin. Compared with the existing API, values of RAPI (calculated from data collected for API) at both stations are at higher levels and provide more information of levels of all pollutants. Therefore, RAPI should be representatively and widely used to provide the public with a better indicator of air quality. In addition, variations and oscillations of pollutants concentrations were also examined and the results show that RSP and NO2 contribute more to the overall pollution level than other components. It is suggested that more abatement strategies be focused on these pollutants to improve air quality in the future.  相似文献   

6.
A case study for assessing the air environmental status due to air emissions is elaborated for the highly industrialised city of Visakhapatnam. The ambient air quality and rain water composition was monitored at 16 stations during post monsoon season, October ‐January, 1998. These investigations of air quality status and air pollutant deposition rates predict that the city of Visakhapatnam is progressing to be one of the highly polluted cities of India. The industrial zones have recorded high pollution levels for criteria pollutants‐Suspended Particulate Matter (SPM) Sulphur‐dioxide (SO2) and Nitrogen‐dioxide (NO2). The Air Quality Exposure Index (AQEI) computed from the observed data indicated that out of 16 sampling stations, four of them were in highly polluted, six fall in moderately polluted categories, and only one in a clean category. Total deposition of SO2 and NO2 (in wet and dry forms) estimated stand to be 149.7, 92.98, 43.95meq/m2/yr in industrial, commercial and residential areas, respectively. A strategy for sustainable air quality through the Critical Load concept has been discussed.  相似文献   

7.
Nail technicians are exposed to volatile organic compounds (VOCs) from nail products, but no studies have previously measured VOC biomarkers for these workers. This study of 10 nail technicians aimed to identify VOCs in nail salons and explore relationships between air concentrations and biomarkers. Personal and area air samples were collected using thermal desorption tubes during a work shift and analyzed using gas chromatography/mass spectrometry (GC/MS) for 71 VOCs. Whole blood samples were collected pre‐shift and post‐shift, and analyzed using GC/MS for 43 VOCs. Ventilation rates were determined using continuous CO2 measurements. Predominant air VOC levels were ethyl methacrylate (median 240 µg/m3), methyl methacrylate (median 205 µg/m3), toluene (median 100 µg/m3), and ethyl acetate (median 639 µg/m3). Blood levels were significantly higher post‐shift than pre‐shift for toluene (median pre‐shift 0.158 µg/L and post‐shift 0.360 µg/L) and ethyl acetate (median pre‐shift <0.158 µg/L and post‐shift 0.510 µg/L); methacrylates were not measured in blood because of their instability. Based on VOCs measured in these seven nail salons, we estimated that emissions from Greater Boston area nail salons may contribute to ambient VOCs. Ventilation rates did not always meet the ASHRAE guideline for nail salons. There is a need for changes in nail product formulation and better ventilation to reduce VOC occupational exposures.  相似文献   

8.
Samples of volatile organic compounds (VOCs) were collected in a smog chamber in order to determine whether automotive exhausts or LP Gas emissions play a greater role in the source of propane and butane, which affect ozone formation and other pollutants in the ambient air of the Mexico City metropolitan area (MCMA). These samples were collected in April 1995 during mornings and evenings. The testing methodology used for measuring exhaust emission were FTP or EPA-74 tests, and SHED type tests were also conducted in order to evaluate evaporative emissions. The finding from analysis of the VOCs collected in the morning demonstrate that in the atmosphere, propane concentrations are higher than that of butane but the reverse in evaporative and exhaust emissions, with the concentration of propane lower than that of butane. Our conclusion is that most of C3 and C4 in the ambient air comes from LP gas and not vehicle exhaust or evaporative emission, due to the higher levels of propane than butane in its formulation. The analysis of VOCs also indicates that although the conversion (in the smog chamber) of alkanes is low during the day, due to the high initial concentration, their contribution in the reaction mechanism to produce ozone can be appreciable.  相似文献   

9.
Indoor air quality was characterized in 10 recently built energy‐efficient French schools during two periods of 4.5 days. Carbon dioxide time‐resolved measurements during occupancy clearly highlight the key role of the ventilation rate (scheduled or occupancy indexed), especially in this type of building, which was tightly sealed and equipped with a dual‐flow ventilation system to provide air refreshment. Volatile organic compounds (VOCs) and inorganic gases (ozone and NO2) were measured indoors and outdoors by passive techniques during the occupied and the unoccupied periods. Over 150 VOC species were identified. Among them, 27 species were selected for quantification, based on their occurrence. High concentrations were found for acetone, 2‐butanone, formaldehyde, toluene, and hexaldehyde. However, these concentrations are lower than those previously observed in conventional school buildings. The indoor/outdoor and unoccupied/occupied ratios are informative regarding emission sources. Except for benzene, ozone, and NO2, all the pollutants in these buildings have an indoor source. Occupancy is associated with increased levels of acetone, 2‐butanone, pentanal, butyl acetate, and alkanes.  相似文献   

10.
There is a growing concern about the possible adverse effects of exposure to air pollution on health during pregnancy. Therefore, a priority of the INMA (environment and childhood) study was to estimate personal exposure to traffic-related air pollution. In the cohort from Valencia (n = 855), ambient levels of NO2 were measured at 93 sampling sites spread over the study area during four different sampling periods of 7 days each. Multiple regression models were used to map ambient NO2 over the area. Geographical data and predictions from kriging obtained by the “let one out” procedure were used as predictors. Individual exposure was assigned as 1) the estimated ambient NO2 level at the home address and 2) the average of estimated ambient NO2 levels at home and work addresses, weighted by the time spent in each environment. Estimations were temporally customised using the NO2 levels registered daily by the regional Air Pollution Monitoring Network. The entire pregnancy and each trimester were taken as exposure windows. The model for the mean levels of NO2 during the sampling periods explained 81% of the variation in NO2 levels. Relative percent differences between the two models of personal exposure assignment were less than 9% for more than 90% of the participants; however the rest of them showed marked differences. Personal exposure estimates were slightly higher in the second model. In both cases, exposure during the whole pregnancy was strongly correlated with exposure in the second trimester. Considering periods shorter than the entire pregnancy will provide us the opportunity to identify specific windows of susceptibility.  相似文献   

11.
This study aimed at surveying lower secondary schools in southern Italy, in a highly polluted area. A community close to an industrial area and three villages in rural areas was investigated. Indoor temperature, relative humidity (RH), gaseous pollutants (CO2 and NO2), selected biological pollutants in indoor dust, and the indoor/outdoor mass concentration and elemental composition of PM2.5 were ascertained. Temperature and RH were within, or close to, the comfort range, while CO2 frequently exceeded the threshold of 1000 ppm, indicating inadequate air exchange rate. In all the classrooms, median NO2 levels were above the WHO threshold value. Dermatophagoides p. allergen concentration was below the sensitizing threshold, while high endotoxin levels were detected in the classrooms, suggesting schools may produce significant risks of endotoxin exposure. Concentration and solubility of PM2.5 elements were used to identify the sources of indoor particles. Indoor concentration of most elements was higher than outdoors. Resuspension was responsible for the indoor increase in soil components. For elements from industrial emission (Cd, Co, Ni, Pb, Sb, Tl, V), the indoor concentration depended on penetration from the outside. For these elements, differences in rural vs industrial concentrations were found, suggesting industrial sources may influence indoor air quality nearby schools.  相似文献   

12.
Source apportionment of ambient VOCs in Delhi City   总被引:7,自引:0,他引:7  
Source apportionment using chemical mass balance (CMB) model was carried using a data set of 360 four hourly samples collected at 15 locations of five categories namely residential, commercial, industrial, traffic intersections and petrol pumps during August 2001-July 2002 in Delhi. The results indicate that emissions from diesel internal combustion engines dominate in Delhi. Vehicular exhaust and evaporative emissions also contribute significantly to VOCs in ambient air. Emission of VOCs associated with sewage sludge was also found to contribute to VOCs in Delhi's air. This points to the fact that open defecation and leaking sewage manholes are a problem in all categories of locations.  相似文献   

13.
14.
This study quantifies the national burden of disease attributed to particulate matter (PM) and ozone (O3) in ambient air in the United Arab Emirates (UAE), a rapidly growing nation in which economic development and climatic conditions pose important challenges for air quality management. Estimates of population exposure to these air pollutants are based on observed air quality data from fixed-site monitoring stations. We divide the UAE into small grid cells and use spatial-statistical methods to estimate the ambient pollutant concentrations in each cell based on the observed data. Premature deaths attributed to PM and O3 are computed for each grid cell and then aggregated across grid cells and over a year to estimate the total number of excess deaths attributable to ambient air pollution. Our best estimate is that approximately 545 (95% CI: 132-1224) excess deaths in the UAE in the year 2007 are attributable to PM in ambient air. These excess deaths represent approximately 7% (95% CI: 2-17%) of the total deaths that year. We attribute approximately 62 premature deaths (95% CI: 17-127) to ground-level O3 for the year 2007. Uncertainty in the natural background level of PM, due to the frequent dust storms occurring in the region, has significant impacts on the attributed mortality estimates. Despite the uncertainties associated with the integrated assessment framework, we conclude that anthropogenic ambient air pollution, in particular PM, causes a considerable public health impact in the UAE in terms of premature deaths. We discuss important uncertainties and scientific hypotheses to be investigated in future work that might help reduce the uncertainties in the burden of disease estimates.  相似文献   

15.
Traditionally air quality networks have been carrying out the continuous, on-line measurement of volatile organic compounds (VOC) in ambient air with GC-FID. In this paper some identification and coelution problems observed while using this technique in long-term measurement campaigns are described. In order to solve these problems a GC-MS was set up and operated simultaneously with a GC-FID for C2-C11 VOCs measurement.There are few on-line, unattended, long term measurements of atmospheric VOCs performed with GC-MS. In this work such a system has been optimized for that purpose, achieving good repeatability, linearity, and detection limits of the order of the GC-FID ones, even smaller in some cases. VOC quantification has been made by using response factors, which is not frequent in on-line GC-MS. That way, the identification and coelution problems detected in the GC-FID, which may led to reporting erroneous data, could be corrected.The combination of GC-FID and GC-MS as complementary techniques for the measurement of speciated VOCs in ambient air at sub-ppbv levels is proposed. Some results of the measurements are presented, including concentration values for some compounds not found until now on public ambient air VOC databases, which were identified and quantified combining both techniques. Results may also help to correct previously published VOC data with wrongly identified compounds by reprocessing raw chromatographic data.  相似文献   

16.
The potential advantages of using activity-based transport models for air quality purposes have been recognized for a long time but models that have been developed along these lines are still scarce. In this paper we demonstrate that an activity-based model provides useful information for predicting hourly ambient pollutant concentrations. For this purpose, the traffic emissions obtained in a previous application of the activity-based model ALBATROSS were used as input for the AURORA air quality model to predict hourly concentrations of NO2, PM10 and O3 in the Netherlands. Predicted concentrations were compared with measured concentrations at 37 monitoring stations from the Dutch air quality monitoring network. A statistical analysis was performed to evaluate model performance for different pollutants, locations and time periods. Results confirm that modelled and measured concentrations present the same geographical and temporal variation. The overall index of agreement for the prediction of hourly pollutant concentrations amounted to 0.64, 0.75 and 0.57 for NO2, O3 and PM10 respectively. Concerning the predictions for NO2, a major traffic pollutant, a more thorough analysis revealed that the ALBATROSS-AURORA model chain yielded better predictions near traffic locations than near background stations. Further, the model performed better in urban areas, on weekdays and during the day, consistent with the emission results obtained in a previous study. The results in this paper demonstrate the ability of the activity-based model to predict the contribution of traffic sources to local air pollution with sufficient accuracy and confirms the usefulness of activity-based transport models for air quality purposes. The fact that the ALBATROSS-AURORA chain provides reliable pollutant concentrations on hourly basis for the whole Netherlands instead of using only daily averages near traffic stations is a plus for future exposure studies aiming at more realistic exposure analyses and health impact assessments.  相似文献   

17.
Contribution of ozone to airborne aldehyde formation in Paris homes   总被引:1,自引:0,他引:1  
Indoor aldehydes may result from ozone-initiated chemistry, mainly documented by experimental studies. As part of an environmental investigation included in the PARIS birth cohort, the aim of this study was to examine ozone contribution to airborne aldehyde formation in Paris homes. Formaldehyde, acetaldehyde and hexaldehyde levels, as well as styrene, nitrogen dioxide and nicotine concentrations, comfort parameters and carbon dioxide levels, were measured twice during the first year of life of the babies. Ambient ozone concentrations were collected from the closest background station of the regional air monitoring network. Traffic-related nitrogen oxide concentrations in front of the dwellings were estimated by an air pollution dispersion model. Home characteristics and families' way of life were described by questionnaires. Stepwise multiple linear regression models were used to link aldehyde levels with ambient ozone concentrations and a few aldehyde precursors involved in oxidation reactions, adjusting for other indoor aldehyde sources, comfort parameters and traffic-related nitrogen oxides. A 4 and 11% increase in formaldehyde and hexaldehyde levels was pointed out when 8-hour ozone concentrations increased by 20 μg/m3. The influence of potential precursors such as indoor styrene level and frequent use of air fresheners, containing unsaturated volatile organic compounds as terpenes, was also found. Thus, our results suggest that ambient ozone can significantly impact indoor air quality, especially with regard to formaldehyde and hexaldehyde levels.  相似文献   

18.
In this study, the relationship between cardiovascular mortality and traffic-related air pollutants (NO2, CO, PM10, and six volatile organic compounds (VOCs), propane, iso-butane, propylene, benzene, meta-, para-, and ortho-xylenes) was investigated. The concentrations of NO2, PM10 and CO from 1993 to 2006 were measured at a fixed-site air monitoring station, and VOC data from 2003 to 2006 were obtained from a photochemical assessment monitoring site in an urban area in central Taiwan. Outcome variables were data on mortality due to cardiovascular diseases (ICD-9-CM 410-411, 414, 430-437) from 1993 to 2006. Cardiovascular mortality averaged 1.5 cases, ranging between 0 and 9 cases per day. Daily air pollution levels ranged from 0.5 to 80.5 ppb for NO2 and from 0.1 to 3.8 ppm for CO. From the subset of data from 2003 to 2006, daily average values ranged from 0.6 to 17.5 ppb for propane, 0.3 to 6.7 ppb for iso-butane, 0.3 to 6.7 ppb for propylene, 0.2 to 3.8 ppb for benzene, 0.3 to 26.0 ppb for m,p-xylene, and 0.02 to 7.6 ppb for o-xylene. Poisson generalized additive model was used to estimate the effects of elevated air pollutant levels on daily mortality, adjusting for meteorological conditions and temporal trends. Single-pollutant model showed that cardiovascular mortality was significantly associated with NO2 lagged 2 days, and with propane, iso-butane, and benzene lagged 0 day. The relative risk for an interquartile range increase in air pollutant levels was 1.053 for NO2, 1.064 for propane, 1.055 for iso-butane, and 1.055 for benzene. In conclusion, daily cardiovascular mortality showed association with data on acute exposure to traffic air pollutants in Taichung, which is an important factor to consider in studying cardiovascular mortality in urban environments.  相似文献   

19.
Implementation of stringent regulations of NOx emission requires the development of new technologies for NOx removal from exhaust gases. This article summarizes current state of NOx abatement strategy. Firstly, the influence of NOx on environment and human health is described. The main focus is put on NOx control methods applied in combustion of fossil fuels in power stations and mobile vehicles, as well as methods used in chemical industry. Furthermore the implementation of ozone and other oxidizing agents in NOx oxidation is emphasized.  相似文献   

20.
Reactions between ozone and indoor contaminants may influence human health and indoor air quality. The U.S. EPA Building Assessment Survey and Evaluation (BASE) study data were analyzed for associations between ambient ozone concentrations and building-related symptom (BRS) prevalence. Multiple logistic regression (MLR) models, adjusted for personal, workplace, and environmental variables, revealed positive relationships (P < 0.05) between ambient ozone concentrations and upper respiratory (UR), dry eyes, neurological and headache BRS (odds ratios ranged from 1.03 to 1.04 per 10 mug/m(3) increase in ambient ozone concentrations). Other BRS had marginally significant relationships with ambient ozone (P < 0.10). A linear dose-response in UR symptoms was observed with increasing ambient ozone (P = 0.03); most other symptoms showed similar but not statistically significant trends. Ambient ozone correlated with indoor concentrations of some aldehydes, a pattern suggesting the occurrence of indoor ozone chemistry. Coupled with the MLR ambient ozone-BRS analysis, this correlation is consistent with the hypothesis that ozone-initiated indoor reactions play an important role in indoor air quality and building occupant health. Replication with increased statistical power and with longitudinal data is needed. If the observed associations are confirmed as causal, ventilation system ozone removal technologies could reduce UR BRS prevalence when higher ambient ozone levels are present. PRACTICAL IMPLICATIONS: This paper provides strong statistical evidence that supports (but does not prove) the hypothesis that ozone entrained into buildings from the outdoor air is involved in increasing the frequency that occupants experience and a range of upper and lower respiratory, mucosal and neurological symptoms by as much as a factor of 2 when ambient ozone levels increase from those found in low-ozone regions to those typical of high-ozone regions. Although replication is needed, the implication is that reducing the amount of ozone entrained into building ventilation systems, either by ambient pollution reduction or engineered gas-phase filtration, may substantially reduce the prevalence of these symptoms experienced by occupants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号