首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Urban Water Journal》2013,10(4):201-214
In addition to assessing the impacts of water quality changes in urban rivers caused by storm water sewer overflows (SWO) and combined sewer overflows (CSO), the extent to which flow dynamics are changed by these structures must be understood in order to define hydrological assessment criteria to guide sustainable water management strategies as required by the European Community (EC) Water Framework Directive. In this study, the quantitative impacts of SWOs and CSOs on the flow dynamics of an urban river and their variability are investigated. For four single runoff events, hydrological measurements were accomplished in the River Dreisam, upstream and downstream of the city of Freiburg, in southwest Germany. As the catchment is widely free of urban areas upstream of the city, comparison with downstream locations allowed quantification of Freiburg's effects on the changes in the hydrograph on an event scale. The proposed hydrological parameter—flow acceleration, peak discharge, and discharge dosage—were shown to be appropriate to assess the impacts of SWOs and CSOs on flood hydrographs in urban rivers.  相似文献   

2.
Cyanobacterial blooms represent a significant ecological and human health problem worldwide. In aquatic environments, cyanobacterial blooms are actually surrounded by dissolved organic matter (DOM) and attached organic matter (AOM) that bind with algal cells. In this study, DOM and AOM fractionated from blooming cyanobacteria in a eutrophic freshwater lake (Lake Taihu, China) were irradiated with a polychromatic UV lamp, and the photochemical heterogeneity was investigated using fluorescence excitation–emission matrix (EEM)-parallel factor (PARAFAC) analysis and synchronous fluorescence (SF)-two dimensional correlation spectroscopy (2DCOS). It was shown that a 6-day UV irradiation caused more pronounced mineralization for DOM than AOM (59.7% vs. 41.9%). The EEM-PARAFAC analysis identified one tyrosine-, one humic-, and two tryptophan-like components in both DOM and AOM, and high component photodegradation rates were observed for DOM versus AOM (k > 0.554 vs. <0.519). Moreover, SF-2DCOS found that the photodegradation of organic matters followed the sequence of tyrosine-like > humic-like > tryptophan-like substances. Humic-like substances promoted the indirect photochemical reactions, and were responsible for the higher photochemical rate for DOM. The lower photodegradation of AOM benefited the integrality of cells in cyanobacterial blooms against the negative impact of UV irradiation. Therefore, the photochemical behavior of organic matter was related to the adaptation of enhanced-duration cyanobacterial blooms in aquatic environments.  相似文献   

3.
Ozonation of natural surface water increases the concentration of oxygen-containing low molecular weight compounds. Many of these compounds support microbiological growth and as such are termed assimilable organic carbon (AOC). Phytoplankton can contribute substantially to the organic carbon load when surface water is used as source for drinking water treatment. We have investigated dissolved organic carbon (DOC) formation from the ozonation of a pure culture of Scenedesmus vacuolatus under defined laboratory conditions, using a combination of DOC fractionation, analysis of selected organic acids, aldehydes and ketones, and an AOC bioassay. Ozonation of algae caused a substantial increase in the concentration of DOC and AOC, notably nearly instantaneously upon exposure to ozone. As a result of ozone exposure the algal cells shrunk, without disintegrating entirely, suggesting that DOC from the cell cytoplasm leaked through compromised cell membranes. We have further illustrated that the specific composition of newly formed AOC (as concentration of organic acids, aldehydes and ketones) in ozonated lake water differed in the presence and absence of additional algal biomass. It is therefore conceivable that strategies for the removal of phytoplankton before pre-ozonation should be considered during the design of drinking water treatment installations, particularly when surface water is used.  相似文献   

4.
Duirk SE  Valentine RL 《Water research》2006,40(14):2667-2674
A kinetic model was developed to predict dichloroacetic acid (DCAA) formation in chloraminated systems. Equations describing DCAA formation were incorporated into an established comprehensive monochloramine-natural organic matter (NOM) reaction model. DCAA formation was theorized to be proportional to the amount of NOM oxidized by monochloramine and described by a single dimensionless DCAA formation coefficient, theta(DCAA) (M(DCAA)/M(DOC(ox)). The applicability of the model to describe DCAA formation in the presence of six different NOM sources was evaluated. DCAA formation could be described by considering a single NOM source-specific value for theta(DCAA) over a wide range of experimental conditions (i.e., pH, NOM, free ammonia, and monochloramine concentrations). DCAA formation appears to be directly proportional to the amount of active chlorine (monochloramine and free chlorine) that reacted with the NOM under these experimental conditions. Values of theta(DCAA) for all six NOM sources, determined by nonlinear regression analysis, varied from 6.51 x 10(-3) to 1.15 x 10(-2) and were linearly correlated with specific ultraviolet absorbance at 280 nm (SUVA(280)). The ability to model monochloramine loss and DCAA formation in the presence of NOM provides insight into disinfection by-product (DBP) formation pathways under chloramination conditions. The subsequent model and correlations to SUVA has the potential to aid the water treatment industry as a tool in developing strategies that minimize DBP formation while maintaining the microbial integrity of the water distribution system.  相似文献   

5.
We investigated the degradation of refractory organic matter (OM) by the basidiomycete fungus Schizophyllum commune to understand the release of dissolved organic compounds, heavy metals and sulfur. The investigated OM consisted of: charcoal, the short time end product of high temperature wood alteration in the absence of oxygen and composed mainly of pure OM; and black shales composed of clay minerals, quartz, sulfides and OM formed geogenically in an abiotic long-term process. In both cases, the OM fraction contains mainly polyaromatic hydrocarbons. We investigated the degradation of these fractions by a wood-rotting basidiomycete, which is able to produce exoenzymes like peroxidases and laccases. These enzymes can perform radical reactions to oxidize OM (like lignin) and therefore hypothetically are able to degrade OM from charcoal and/or low grade metamorphic black shales. Release of new components into dissolved organic carbon (DOC) could be detected in both cases. The attack on OM in the case of black shales coincided with the release of the heavy metals Fe, Mn and Ni. By following sulfur concentrations throughout the experiment, it was shown that heavy metal release is not due to pyrite oxidation. Ground black shale and charcoal samples were inoculated with S. commune in a diluted minimal medium containing aspartic acid and glucose. The aqueous and solid phases were sampled after 1, 7, 28 and 84 days. DOC was measured as non purgeable carbon and characterized by size exclusion chromatography and UV detection. Carbon concentrations of the solid phase were determined by element analyses. After initial decrease of the DOC concentrations due to the degradation of the carbon source provided with the medium, DOC increased up to 80 mg/l after 84 days. Carbon decreased in the solid fraction confirming that this carbon was released as DOC by the fungus. The newly generated DOC formed larger agglomerations than the DOC of the growth medium. The investigation proved that the degradation of persistent carbon sources, such as charcoal and black shale, is accelerated by fungal activity. Consequently, the associated release of heavy metals is also accelerated by the fungus. Main products of the biological degradation processes were organic heavy metal complexes which can enter the environment.  相似文献   

6.
Algogenic organic matter produced by the excess growth of cyanobacteria in semi-closed water areas causes coagulation inhibition in drinking water production. In this study, hydrophilic substances of Microcystis aeruginosa, which were mainly composed of lipopolysaccharide (LPS) and RNA, were prepared, and the involvement of these cyanobacterial hydrophilic substances in coagulation inhibition was investigated. As a result, it was found that the negatively charged hydrophilic substances with a molecular weight higher than 10 kDa have a significant role in coagulation inhibition. Further fractionation of cyanobacterial hydrophilic substances revealed that surface-retained organic matter (SOM), including LPS, could exhibit a potent inhibitory effect on the coagulation using polyaluminum chloride (PACl), presumably because of the direct interaction of hydrophilic SOM with cations originated from PACl, which could impede the hydrolysis of the coagulant.  相似文献   

7.
Lamsal R  Walsh ME  Gagnon GA 《Water research》2011,45(10):3263-3269
This study examined the impact of UV, ozone (O3), advanced oxidation processes (AOPs) including O3/UV, H2O2/UV H2O2/O3 in the change of molecular weight distribution (MWD) and disinfection by-product formation potential (DBPFP). Bench-scale experiments were conducted with surface river water and changes in the UV absorbance at 254 nm (UV254), total organic carbon (TOC), trihalomethane and haloacetic acid formation potential (THMFP, HAAFP) and MWD of the raw and oxidized water were analyzed to evaluate treatment performance. Combination of O3 and UV with H2O2 was found to result in more TOC and UV254 reduction than the individual processes. The O3/UV process was found to be the most effective AOP for NOM reduction, with TOC and UV254 reduced by 31 and 88%, respectively. Application of O3/UV and H2O2/UV treatments to the source waters organics with 190-1500 Da molecular weight resulted in the near complete alteration of the molecular weight of NOM from >900 Da to <300 Da H2O2/UV was found to be the most effective treatment for the reduction of THM and HAA formation under uniform formation conditions. These results could hold particular significance for drinking water utilities with low alkalinity source waters that are investigating AOPs, as there are limited published studies that have evaluated the treatment efficacy of five different oxidation processes in parallel.  相似文献   

8.
Quinlivan PA  Li L  Knappe DR 《Water research》2005,39(8):1663-1673
The overall objective of this research was to determine the effects of physical and chemical activated carbon characteristics on the simultaneous adsorption of trace organic contaminants and natural organic matter (NOM). A matrix of 12 activated carbon fibers (ACFs) with three activation levels and four surface chemistry levels (acid-washed, oxidized, hydrogen-treated, and ammonia-treated) was studied to systematically evaluate pore structure and surface chemistry phenomena. Also, three commercially available granular activated carbons (GACs) were tested. The relatively hydrophilic fuel additive methyl tertiary-butyl ether (MTBE) and the relatively hydrophobic solvent trichloroethene (TCE) served as micropollutant probes. A comparison of adsorption isotherm data collected in the presence and absence of NOM showed that percent reductions of single-solute TCE and MTBE adsorption capacities that resulted from the presence of co-adsorbing NOM were not strongly affected by the chemical characteristics of activated carbons. However, hydrophobic carbons were more effective adsorbents for both TCE and MTBE than hydrophilic carbons because enhanced water adsorption on the latter interfered with the adsorption of micropollutants from solutions containing NOM. With respect to pore structure, activated carbons should exhibit a large volume of micropores with widths that are about 1.5 times the kinetic diameter of the target adsorbate. Furthermore, an effective adsorbent should possess a micropore size distribution that extends to widths that are approximately twice the kinetic diameter of the target adsorbate to prevent pore blockage/constriction as a result of NOM adsorption.  相似文献   

9.
Wu J  Zhang H  He PJ  Shao LM 《Water research》2011,45(4):1711-1719
Dissolved organic matter (DOM) plays an important role in heavy metal migration from municipal solid waste (MSW) to aquatic environments via the leachate pathway. In this study, fluorescence excitation-emission matrix (EEM) quenching combined with parallel factor (PARAFAC) analysis was adopted to characterize the binding properties of four heavy metals (Cu, Pb, Zn and Cd) and DOM in MSW leachate. Nine leachate samples were collected from various stages of MSW management, including collection, transportation, incineration, landfill and subsequent leachate treatment. Three humic-like components and one protein-like component were identified in the MSW-derived DOM by PARAFAC. Significant differences in quenching effects were observed between components and metal ions, and a relatively consistent trend in metal quenching curves was observed among various leachate samples. Among the four heavy metals, Cu(II) titration led to fluorescence quenching of all four PARAFAC-derived components. Additionally, strong quenching effects were only observed in protein-like and fulvic acid (FA)-like components with the addition of Pb(II), which suggested that these fractions are mainly responsible for Pb(II) binding in MSW-derived DOM. Moreover, the significant quenching effects of the FA-like component by the four heavy metals revealed that the FA-like fraction in MSW-derived DOM plays an important role in heavy metal speciation; therefore, it may be useful as an indicator to assess the potential ability of heavy metal binding and migration.  相似文献   

10.
The quantitative multimolecular approach (QMA) based on an exhaustive identification and quantification of molecules from the extractable organic matter (EOM) has been recently developed in order to investigate organic contamination in sediments by a more complete method than the restrictive quantification of target contaminants. Such an approach allows (i) the comparison between natural and anthropogenic inputs, (ii) between modern and fossil organic matter and (iii) the differentiation between several anthropogenic sources. However QMA is based on the quantification of molecules recovered by organic solvent and then analyzed by gas chromatography-mass spectrometry, which represent a small fraction of sedimentary organic matter (SOM). In order to extend the conclusions of QMA to SOM, radiocarbon analyses have been performed on organic extracts and decarbonated sediments. This analysis allows (i) the differentiation between modern biomass (contemporary 14C) and fossil organic matter (14C-free) and (ii) the calculation of the modern carbon percentage (PMC). At the confluence between Fensch and Moselle Rivers, a catchment highly contaminated by both industrial activities and urbanization, PMC values in decarbonated sediments are well correlated with the percentage of natural molecular markers determined by QMA. It highlights that, for this type of contamination by fossil organic matter inputs, the conclusions of QMA can be scaled up to SOM. QMA is an efficient environmental diagnostic tool that leads to a more realistic quantification of fossil organic matter in sediments.  相似文献   

11.
Xiaodi Hao  Qilin Wang  Yali Cao 《Water research》2009,43(14):3604-1259
Decrease in bacterial activity (cell decay) in activated sludge can be attributed to cell death (reduction in the amount of active bacteria) and activity decay (reduction in the specific activity of active bacteria). The aim of this study was to experimentally differentiate between cell death and activity decay as a source of decrease in microbial activity. By means of measuring maximal oxygen uptake rates, verifying membrane integrity by live/dead staining and verifying presence of 16S rRNA with fluorescence in-situ hybridization, the decay rates and the death rates of ammonium oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and ordinary heterotrophic organisms (OHOs) were determined respectively in a nitrifying sequencing batch reactor (SBR) and a heterotrophic SBR. The experiments revealed that in the nitrifying system activity decay contributed 47% and 82% to the decreased activities of AOB and NOB and that cell death was responsible for 53% and 18% of decreases in their respective activities. In the heterotrophic system, activity decay took a share of 78% in the decreased activity of OHOs, and cell death was only responsible for 22% of decrease in their activity. The difference between the importance of cell death on the decreased activities of AOB and OHOs might be caused by the mechanisms of substrate storage and/or cryptic growth/death-regeneration of OHOs. The different nutrient sources for AOB and NOB might be the reason for a relatively smaller fraction of cell death in NOB.  相似文献   

12.
Adsorption of dissolved natural organic matter (DOM) by virgin and modified granular activated carbons (GACs) was studied. DOM samples were obtained from two water treatment plants before (i.e., raw water) and after coagulation/flocculation/sedimentation processes (i.e., treated water). A granular activated carbon (GAC) was modified by high temperature helium or ammonia treatment, or iron impregnation followed by high temperature ammonia treatment. Two activated carbon fibers (ACFs) were also used, with no modification, to examine the effect of carbon porosity on DOM adsorption. Size exclusion chromatography (SEC) and specific ultraviolet absorbance (SUVA(254)) were employed to characterize the DOMs before and after adsorption. Iron-impregnated (HDFe) and ammonia-treated (HDN) activated carbons showed significantly higher DOM uptakes than the virgin GAC. The enhanced DOM uptake by HDFe was due to the presence of iron species on the carbon surface. The higher uptake of HDN was attributed to the enlarged carbon pores and basic surface created during ammonia treatment. The SEC and SUVA(254) results showed no specific selectivity in the removal of different DOM components as a result of carbon modification. The removal of DOM from both raw and treated waters was negligible by ACF10, having 96% of its surface area in pores smaller than 1 nm. Small molecular weight (MW) DOM components were preferentially removed by ACF20H, having 33% of its surface area in 1--3 nm pores. DOM components with MWs larger than 1600, 2000, and 2700 Da of Charleston raw, Charleston-treated, and Spartanburg-treated waters, respectively, were excluded from the pores of ACF20H. In contrast to carbon fibers, DOM components from entire MW range were removed from waters by virgin and modified GACs.  相似文献   

13.
This study explored the effect of different bulk organic carbon matrices on the fate of trace organic chemicals (TOrC) during managed aquifer recharge (MAR). Infiltration through porous media was simulated in biologically active column experiments under aerobic and anoxic recharge conditions. Wastewater effluent derived organic carbon types, differing in hydrophobicity and biodegradability (i. e., hydrophobic acids, hydrophilic carbon, organic colloids), were used as feed substrates in the column experiments. These carbon substrates while fed at the same concentration differed in their ability to support soil biomass growth during porous media infiltration. Removal of degradable TOrC (with the exception of diclofenac and propyphenazone) was equal or better under aerobic versus anoxic porous media infiltration conditions. During the initial phase of infiltration, the presence of biodegradable organic carbon (BDOC) enhanced the decay of degradable TOrC by promoting soil biomass growth, suggesting that BDOC served as a co-substrate in a co-metabolic transformation of these contaminants. However, unexpected high removal efficiencies were observed for all degradable TOrC in the presence of low BDOC concentrations under well adopted oligotrophic conditions. It is hypothesized that removal under these conditions is caused by a specialized microbial community growing on refractory carbon substrates such as hydrophobic acids. Findings of this study reveal that the concentration and character of bulk organic carbon present in effluents affect the degradation efficiency for TOrC during recharge operation. Specifically aerobic, oligotrophic microbiological soil environments present favorable conditions for the transformation of TOrC, including rather recalcitrant compounds such as chlorinated flame retardants.  相似文献   

14.
Three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy was employed to characterize dissolved organic matter (DOM) in a submerged membrane bioreactor (MBR). Three fluorescence peaks could be identified from the EEM fluorescence spectra of the DOM samples in the MBR. Two peaks were associated with the protein-like fluorophores, and the third was related to the visible humic acid-like fluorophores. Only two main peaks were observed in the EEM fluorescence spectra of the extracellular polymeric substance (EPS) samples, which were due to the fluorescence of protein-like and humic acid-like matters, respectively. However, the EEM fluorescence spectra of membrane foulants were observed to have three peaks. It was also found that the dominant fluorescence substances in membrane foulants were protein-like substances, which might be due to the retention of proteins in the DOM and/or EPS in the MBR by the fine pores of the membrane. Quantitative analysis of the fluorescence spectra including peak locations, fluorescence intensity, and different peak intensity ratios and the fluorescence regional integration (FRI) analysis were also carried out in order to better understand the similarities and differences among the EEM spectra of the DOM, EPS, and membrane foulant samples and to further provide an insight into membrane fouling caused by the fluorescence substances in the DOM in submerged MBRs.  相似文献   

15.
Yan M  Wang D  Ni J  Qu J  Chow CW  Liu H 《Water research》2008,42(13):3361-3370
The mechanism of natural organic matter (NOM) removal by AlCl(3) and polyaluminum chloride (PACl) was investigated through bench-scale tests. The fraction distributions of NOM and residual Al after coagulation in solution, colloid and sediment were analyzed as changes of coagulant dosage and pH. The influence of NOM, coagulant dose and pH on coagulation kinetics of AlCl(3) was investigated using photometric dispersion analyzer compared with PACl. Monomeric Al species (Al(a)) shows high ability to satisfy some unsaturated coordinate bonds of NOM to facilitate particle and NOM removal, while most of the flocs formed by Al(a) are small and difficult to settle. Medium polymerized Al species (Al(b)) can destabilize particle and NOM efficiently, while some flocs formed by Al(b) are not large and not easy to precipitate as compared to those formed by colloidal or solid Al species (Al(c)). Thus, Al(c) could adsorb and remove NOM efficiently. The removal of contaminant by species of Al(a), Al(b) and Al(c) follows mechanisms of complexation, neutralization and adsorption, respectively. Unlike preformed Al(b) in PACl, in-situ-formed Al(b) can remove NOM and particle more efficiently via the mechanism of further hydrolysis and transfer into Al(c) during coagulation. While the presence of NOM would reduce Al(b) formed in-situ due to the complexation of NOM and Al(a).  相似文献   

16.
Swietlik J  Sikorska E 《Water research》2004,38(17):3791-3799
The composition of natural organic matter (NOM) fractions before and after the reaction with chlorine dioxide as well as ozone was studied by means of total luminescence spectroscopy (TLS) and synchronous scanning fluorescence measurements. The excitation-emission matrices spectra (EEMs) of natural as well as oxidised NOM fractions revealed two well-resolved bands with maxima at Ex/Em of 250-265/422-452 nm and at Ex/Em 300-336/414-446 nm ascribed to humic and fulvic material. The study of emission and synchronous spectra also confirmed the presence of protein-like constituents in all examined NOM fractions. The study of EEMs proved, that oxidation of all NOM fractions with ClO(2) caused mainly the break-up of molecules into smaller fragments and a decrease of the aromaticity. Changes in EEMs after the oxidation of individual NOM fractions with O(3) confirmed the formation of a significant amount of ozonation by-products, i.e. carboxylic acids, aldehydes and ketones during the oxidation process. In addition, the fluorescence studies confirmed relatively high reactivity of all NOM fractions with ClO(2) as well as with ozone.  相似文献   

17.
Transmission electron microscopy (TEM) coupled with electron energy loss spectroscopy (EELS) and energy dispersive X-ray spectroscopy (EDXS) was used to investigate the coagulation of natural organic matter with a ferric salt. Jar-test experiments were first conducted with a reconstituted water containing either synthetic or natural extracts of humic substances, and then with a raw water from Moselle River (France). The characterization of the freeze-dried coagulated sediment by EELS in the 250-450 eV range, showed that Fe-coagulant species predominantly associate with the carboxylic groups of organic matter, and that this interaction is accompanied by a release of previously complexed calcium ions. The variation of Fe/C elemental ratio with iron concentration provides insightful information into the coagulation mechanism of humic substances. At acid pH, Fe/C remains close to 3 over the whole range of iron concentrations investigated, while a much lower atomic ratio is expected from the value of optimal coagulant dosage. This suggests that a charge neutralization/complexation mechanism is responsible for the removal of humic colloids, the aggregates being formed with both iron-coagulated and proton-neutralized organic compounds. At pH 8, the decrease in Fe/C around optimal coagulant concentration is interpreted as a bridging of stretched humic macromolecules by Fe-hydrolyzed species. Aggregation would then result from a competition between reconformation of humic chains around coagulant species and collision of destabilized humic material. EELS also enabled a fingerpriting of natural organic substances contained in the iron-coagulated surface water, N/C elemental analyses revealing that humic colloids are removed prior to proteinic compounds.  相似文献   

18.
From analysis of spectrophotometric properties of dissolved organic matter (OM) and the hydrochemical responses of some karst springs under different hydrologic conditions, an assessment of the origin and transfer pathway of OM present in karst spring waters, from soil and epikarst toward the spring, has been conducted for three karst aquifers in southern Spain: Alta Cadena, Sierra de Enmedio and Los Tajos. Intrinsic fluorescence (excitation-emission matrices or EEMs), together with major water chemistry (electrical conductivity, temperature, alkalinity, Cl, Mg+ 2) and PCO2 along with natural hydrochemical tracers (TOC and NO3), have been monitored in 19 springs which drain the three karst aquifers examined in this study. The spring water EEM spectra indicate that fulvic acid-like substances, produced in the soil as a consequence of the decomposition of OM, are the dominant fluorophores, although some of the OM appears to originate from in situ microbiological activity but could be indicative of contamination present in recharge waters from livestock. During each recharge event, TOC and NO3 concentrations increased and variations in fluorescence intensities of peaks attributed to fulvic acid-like compounds were observed. In areas with minimal soil development, spatial and temporal variations in the fluorescence intensity of fulvic acid-like substances and other fluorophores derived from microbiological activity, together with other hydrochemical parameters, provide insights into the hydrogeological functioning of karst aquifers and the infiltration velocity of water from soil and facilitate assessment of contamination vulnerability in these aquifers.  相似文献   

19.
Lake Kinneret (Sea of Galilee) is one of the major water resources in Israel. The origin and characteristics of natural organic matter (NOM) in the lake and its tributary rivers were studied using fluorescence excitation emission matrices (EEM) and parallel factor analysis. Two humic-like and one proteinous components were sufficient to describe EEM variability among 167 water samples collected between 2/2005 and 9/2006. The two humic-like components showed different relations in lake and riverine samples. Their vertical distribution in the lake was affected by seasonal stratification and distance from water surface, presumably reflecting the release of humic-like matter from sediments, its production via NOM transformation in the bottom layers, and its photodegradation in the upper layers. Vertical distribution of the proteinous component, indicating biological activity at upper water layers, did not correlate with that of the humic-like components. Dissolved organic carbon concentrations did not show any vertical stratification, emphasizing the power of EEM to explore NOM dynamics.  相似文献   

20.
Effluent organic matter (EfOM) from activated sludge systems is composed primarily of influent refractory compounds, residual degradable substrate, intermediate products and soluble microbial products (SMPs). Depending on operational conditions (hydraulic and sludge retention time (SRT)), the quantity and quality of EfOM significantly changes. The main objective of this research was to quantify and characterize the EfOM of a lab-scale activated sludge sequencing batch reactor (SBR), which was operated at three SRTs and fed glucose, an easily biodegradable substrate. EfOM was followed with two direct-quantification methods (chemical oxygen demand (COD) and dissolved organic carbon (DOC)), three spectrometric methods (ultraviolet absorbance at 254 nm (UVA254), excitation-emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC)) and three organic matter (OM) indices (specific UVA254 (SUVA), SUVA-COD, COD/DOC ratio). The significant increment of UVA254 and OM indices after treatment indicated an accumulation of refractory high-molecular-weight humic-like compounds in the EfOM, which demonstrated that EfOM was composed mainly by SMPs and not glucose. On the other hand, as the SRT increased, the amount of EfOM decreased, but SUVA, SUVA-COD and fluorescence intensity increased; these trends indicated the accumulation of SMPs of increased molecular weight and aromaticity. Increasing SRT in the SBRs reduced the amount of EfOM, but increased its aromaticity and reactivity. Visual analysis of EfOM EEMs showed two protein- and one humic-like peak, which were attributed to SMPs generated within the SBRs. PARAFAC determined that a two-component model best represented EfOM EEMs. The two-components from PARAFAC were mathematically correlated to the visually identified protein- and humic-like SMPs peaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号