首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To assess the atmospheric environmental impacts of anthropogenic reactive nitrogen in the fast-developing Eastern China region, we measured atmospheric concentrations of nitrogen dioxide (NO2) and ammonia (NH3) as well as the wet deposition of inorganic nitrogen (NO3 and NH4+) and dissolved organic nitrogen (DON) levels in a typical agricultural catchment in Jiangsu Province, China, from October 2007 to September 2008. The annual average gaseous concentrations of NO2 and NH3 were 42.2 μg m3 and 4.5 μg m3 (0 °C, 760 mm Hg), respectively, whereas those of NO3, NH4+, and DON in the rainwater within the study catchment were 1.3, 1.3, and 0.5 mg N L1, respectively. No clear difference in gaseous NO2 concentrations and nitrogen concentrations in collected rainwater was found between the crop field and residential sites, but the average NH3 concentration of 5.4 μg m3 in residential sites was significantly higher than that in field sites (4.1 μg m3). Total depositions were 40 kg N ha1 yr1 for crop field sites and 30 kg N ha1 yr1 for residential sites, in which dry depositions (NO2 and NH3) were 7.6 kg N ha1 yr1 for crop field sites and 1.9 kg N ha1 yr1 for residential sites. The DON in the rainwater accounted for 16% of the total wet nitrogen deposition. Oxidized N (NO3 in the precipitation and gaseous NO2) was the dominant form of nitrogen deposition in the studied region, indicating that reactive forms of nitrogen created from urban areas contribute greatly to N deposition in the rural area evaluated in this study.  相似文献   

2.
Regional-scale databases can be particularly useful for identifying relationships between dissolved inorganic nitrogen (N) leaching in forests and environmental drivers, which in turn allow an assessment of the risk of ecosystem damage, such as forest acidification and eutrophication of downstream water bodies. However, detecting the ‘signal’ of a significant correlate to N leaching against a background of wide variability in other factors requires a large number of sites, and the validation of models developed requires a similarly large number of independent sites. Here we use two large and fully independent databases of forest ecosystems across Europe to develop and validate indicators of N saturation and leaching. One database was used for model development and the other for validating these models.Among 35 variables considered, the most significant indicators of N leaching in the model development database were: the flux of dissolved inorganic N in deposition, mean annual temperature, mean altitude, the site drainage (plot vs catchment), needle- and litter-N concentration, organic horizon C:N ratio, and subsoil pH. Altitude was not a consistent predictor (it was significant in the development database but not in the validation database), and needle and litter N concentration, plot vs catchment, and subsoil pH all showed high intercorrelation with N deposition and so were not significant in models already including N deposition. The most consistent and useful indicators of N leaching were throughfall N deposition, organic horizon C:N ratio and mean annual temperature. Sites receiving low levels of N deposition (< 8 kg N ha− 1 y− 1) showed very low output fluxes of N and were simulated separately from more polluted forests. In general, the models successfully predicted N leaching (mean of ± 5 kg N ha− 1 y− 1 between observed and predicted) from forests at early to intermediate stages of nitrogen saturation but not from nitrogen-saturated sites. Thus, simple relationships developed from combining (1) external drivers (deposition, temperature) and (2) site conditions (nitrogen status of soils) can successfully estimate nitrogen leaching from forests that have not yet been highly damaged by N deposition.  相似文献   

3.
Addition of different forms of nitrogen fertilizer to cultivated soil is known to affect carbon dioxide (CO2) and nitrous oxide (N2O) emissions. In this study, the effect of urea, wastewater sludge and vermicompost on emissions of CO2 and N2O in soil cultivated with bean was investigated. Beans were cultivated in the greenhouse in three consecutive experiments, fertilized with or without wastewater sludge at two application rates (33 and 55 Mg fresh wastewater sludge ha− 1, i.e. 48 and 80 kg N ha− 1 considering a N mineralization rate of 40%), vermicompost derived from the wastewater sludge (212 Mg ha− 1, i.e. 80 kg N ha− 1) or urea (170 kg ha− 1, i.e. 80 kg N ha− 1), while pH, electrolytic conductivity (EC), inorganic nitrogen and CO2 and N2O emissions were monitored. Vermicompost added to soil increased EC at onset of the experiment, but thereafter values were similar to the other treatments. Most of the NO3 was taken up by the plants, although some was leached from the upper to the lower soil layer. CO2 emission was 375 C kg ha− 1 y− 1 in the unamended soil, 340 kg C ha− 1 y− 1 in the urea-amended soil and 839 kg ha− 1 y− 1 in the vermicompost-amended soil. N2O emission was 2.92 kg N ha− 1 y− 1 in soil amended with 55 Mg wastewater sludge ha− 1, but only 0.03 kg N ha− 1 y− 1 in the unamended soil. The emission of CO2 was affected by the phenological stage of the plant while organic fertilizer increased the CO2 and N2O emission, and the yield per plant. Environmental and economic implications must to be considered to decide how many, how often and what kind of organic fertilizer could be used to increase yields, while limiting soil deterioration and greenhouse gas emissions.  相似文献   

4.
The objective of this work was to evaluate the importance of heterotrophic denitrification in the fate of nitrogen surpluses at the catchment scale. For that purpose we modified the denitrification module of TNT2 model and calibrated the model on a small catchment where denitrification measurements had been performed in different locations. The main interest of the TNT2 model is its ability to simulate the dynamics of the zones where soil and shallow water table interact, making it possible to spatialize the denitrification process. Daily water and nitrogen flux at the outlet were relatively well simulated (Nash of 0.85 and 0.77). In average, the model correctly simulates the denitrification measurements (R = 0.68). Nitrogen flux towards the atmosphere, at the catchment scale (4.70 g N m− 2 year− 1), is of the same order of magnitude as the soluble N flux in the stream. The model was able to reproduce the distribution of denitrification in the riparian (mean of 9.26 g N m− 2 year− 1) and hillslope (mean of 3.45 g N m− 2 year− 1) domains of the catchment. The results confirm the importance of riparian denitrification, but show also that hillslope soils contribute significantly (60%) to the whole catchment denitrification. The variations of denitrification rates, and also of nitrate concentrations in stream were not very well simulated by the model, highlighting the complexity of the spatial and temporal controls of nitrogen dynamics in areas with high inputs of nitrogen fertilizers, especially under organic forms.  相似文献   

5.
Coastal sand dunes are considered to be threatened by the atmospheric deposition of nitrogen (N); however, experimental investigations of the effects of N deposition on dune vegetation and soil using realistic N loads and sites with low background deposition are scarce. This study reports the effects of low levels of fertilisation with N and phosphorus (P) on the vegetation, above-ground biomass, plant tissue chemistry and soil chemistry of fixed dune grasslands. In addition, the impacts of grazing management and its potential to mitigate adverse effects of N fertilisation were examined. Four N treatments (unwatered control, watered control, + 7.5 kg ha− 1 year− 1, + 15 kg ha− 1 year− 1) were combined with three grazing treatments (ungrazed, rabbit grazed, rabbit and pony grazed). In a separate experiment, effects of fertilisation with both N (15 kg ha− 1 year− 1) and P (20 kg ha− 1 year− 1) were investigated. Vegetation composition was assessed using the point quadrat method. Above-ground biomass, sward heights, tissue N and P concentrations and soil chemical parameters were also measured. After two years, N addition resulted in greater amounts of total above-ground biomass, bryophyte biomass and changes in bryophyte tissue chemistry. No effects on vegetation composition, sward height or soil parameters occurred. Fertilisation with both nutrients had a greater impact on above-ground biomass, sward heights and sward structure than N addition alone. The grazing treatments differed in their species composition. The changes observed after only two years of fertilisation may lead to community changes over longer time scales. Effects were observed even under heavy grazing with phosphorus limitation. Therefore, the upper critical load for N for dune grasslands may be below the previously proposed 20 kg ha− 1 year− 1 and grazing may not mitigate all negative effects of N deposition.  相似文献   

6.
The precipitation chemistry, deposition, nutrient pools and composition of soils and soil water, as well as an estimate of historical deposition of sulphur (S) and inorganic nitrogen (N) for the period 1860-2008, were determined in primeval deciduous and coniferous forests at the sites Javornik and Pop Ivan, respectively. Measured S throughfall inputs of 10 kg ha− 1 year− 1 in 2008 were similar to those estimated for the period 1900-1950 at both sites. The highest estimated S inputs were in the 1980s. Measured bulk deposition of N in 2008 was lower at Pop Ivan (5.6 kg ha− 1 year− 1) compared to Javornik (12 kg ha− 1 year− 1). Significantly lower NO3 deposition was both estimated and measured at Pop Ivan. Higher soil base cation concentrations were observed at well-buffered Javornik underlain by flysch (Ca pool of 2046 kg ha− 1 and base saturation of 29%) compared to Pop Ivan underlain by crystalline schist (Ca pool of 186 kg ha− 1 and base saturation of 6.5%). The soil pool of organic carbon (C) was higher at Pop Ivan (212 t ha− 1) compared to Javornik (127 t ha− 1). The C concentration was positively correlated with organic N in the soil (p < 0.001) at both sites, but the mass average C/N ratio in the forest floor was lower at Javornik (22) than at Pop Ivan (26). High N leaching of 17 kg ha− 1 year− 1 at the 90 cm depth was measured in the soil water at Javornik, suggesting high mineralization and nitrification rates in old growth deciduous forests in the area. Despite relatively low Al concentrations in the soil water, a low soil water Bc/Al ratio (0.9) (Bc = Ca + Mg + K) was found in the upper mineral soil at Pop Ivan. This suggests that the spruce forest ecosystems in the area are vulnerable to anthropogenic acidification and to the adverse effects of Al on forest root systems.  相似文献   

7.
The effects of insect defoliators on throughfall and soil nutrient fluxes were studied in coniferous and deciduous stands at five UK intensive monitoring plots (1998 to 2008). Links were found between the dissolved organic carbon (DOC), nitrogen (N) and potassium (K) fluxes through the forest system to biological activity within the canopy. Underlying soil type determined the leaching or accumulation of these elements. Under oak, monitored at two sites, frass from caterpillars of Tortrix viridana and Operophtera brumata added direct deposition of ~ 16 kg ha−1extra N during defoliation. Peaks of nitrate (NO3-N) flux between 5 and 9 kg ha−1 (×5 usual winter values) were recorded in consecutive years in shallow soil waters. Synchronous rises in deep soil NO3-N fluxes at the Grizedale sandy site indicate downward flushing, not seen at the clay site. Under three Sitka spruce stands, generation of honeydew (DOC) was attributed to two aphid species (Elatobium abietinum and Cinara pilicornis) with distinctive feeding strategies. Throughfall DOC showed mean annual fluxes (6 seasons) ~ 45-60 kg ha−1 compared with rainfall values of 14-22 kg ha−1. Increases of total N in throughfall and NO3-N fluxes in shallow soil solution were detected — soil water fluxes reached  8 kg ha−1 in Llyn Brianne, ~ 25 kg ha−1 in Tummel, and ~ 40 kg NO3-N ha−1 in Coalburn. At Tummel, on sandy soil, NO3-N leaching showed increased concentration at depth, attributed to microbiological activity within the soil. By contrast, at Coalburn and Llyn Brianne, sites on peaty gleys, soil water NO3-N was retained mostly within the humus layer. Soil type is thus key to predicting N movement and retention patterns. These long term analyses show important direct and indirect effects of phytophagous insects in forest ecosystems, on above and below ground processes affecting tree growth, soil condition, vegetation and water quality.  相似文献   

8.
Due to its potential adverse effects on freshwater acidification, risk assessments of the impacts of forest expansion on surface waters are required. The critical load methodology is the standard way of assessing these risks and the two most widely used models are the Steady-State Water Chemistry (SSWC) and First-order Acidity Balance (FAB) models. In the UK the recommended risk assessment procedure for assessing the impact of forest expansion on freshwater acidification uses the SSWC model, whilst the FAB model is used for guiding emission policy. This study compared the two models for assessing the sensitivity of streamwater to acidification in 14 catchments with different proportions of broadleaf woodland cover in acid-sensitive areas in the UK. Both models predicted the exceedance of streamwater critical loads in the same catchments, but the magnitudes of exceedance varied due to the different treatment of nitrogen processes. The FAB model failed to account for high nitrogen leaching to streamwater, attributed to nitrogen deposition and/or fixation of nitrogen by alder trees in some study catchments, while both models underestimated the influence of high seasalt deposition. Critical load exceedance in most catchments was not sensitive to the use of different acid neutralising capacity thresholds or runoff estimates, probably due to the large difference between critical load values and acidic deposition loadings. However, the assessments were more sensitive to differences in calculation procedure in catchments where nitrogen deposition was similar to the availability of base cations from weathering and/or where critical load exceedance values were < 1 keq H+ ha− 1 yr− 1. Critical load exceedance values from both models agreed with assessments of acid-sensitivity based on indicator macroinvertebrates sampled from the study catchments. Thus the methodology currently used in the UK appears to be robust for assessing the risk of broadleaf woodland expansion on surface water acidification and ecological status.  相似文献   

9.
Heather moorlands are internationally important ecosystems that are highly sensitive to eutrophication and acidification by reactive atmospheric nitrogen (N) deposition. We used a long-term experiment simulating wet-deposition of N on heather moorland to identify potential bio-indicators of N deposition. These indicators were subsequently employed in a survey covering a N deposition gradient ranging from approximately 7 to 31 kg N ha− 1 yr− 1, at selected sites throughout the UK. In this regional survey litter phenol oxidase activity and bryophyte species richness were negatively associated with N deposition. Calluna vulgaris N:P ratios and litter extractable N were positively correlated with N deposition. The use of the suite of four bio-indicators has the potential to provide rapid assessment of the extent of N saturation of heather moorland sites and moorland ecosystem functioning, and has significant advantages over reliance on single measures such as soil N status or an individual bio-indicator species.  相似文献   

10.
Data from 5 wet deposition stations and 21 streams during 1980-2006 were analyzed to investigate chemical responses of streams to reduced acidic deposition in the central Appalachian Mountain region of West Virginia, USA. Wet deposition of acidic anions (i.e., sulfate, nitrate, and chloride) and hydrogen ions decreased significantly during the studied time period. Stream sulfate showed a delayed response to the reduced acidic deposition, and showed a decrease in the 2000s (− 5.54 µeq L− 1 yr− 1) and the whole period (− 0.49 µeq L− 1 yr− 1). No significant trend of stream nitrate + nitrite and chloride was observed. Stream alkalinity increased in the 1990s (+ 23.33 µeq L− 1 yr− 1) and the whole period (+ 7.26 µeq L− 1 yr− 1). Stream hydrogen ions decreased in the 1990s (− 0.002 µeq L− 1 yr− 1), 2000s (− 0.001 µeq L− 1 yr− 1), and the whole period (− 0.001 µeq L− 1 yr− 1). Compared with most acidic streams and lakes in the United States and Europe, a lower decreasing rate of hydrogen ions and higher increasing rate of alkalinity were observed in the alkaline West Virginian streams in the 1990s. However, due to their initial negative or zero alkalinity values, those acidic streams showed a higher percent increase in alkalinity than that in the alkaline West Virginian streams (from 800 µeq L− 1 yr− 1 to 1200 µeq L− 1 yr− 1). Total aluminum in the West Virginian streams decreased in the 1990s (− 0.67 µmol L− 1 yr− 1) and the whole period (− 0.22 µmol L− 1 yr− 1). The current study advanced our understanding of streams' responses to the reduced acidic deposition in the Mid-Appalachians since the passage of the 1970 and 1990 Amendments to the United States Clean Air Act (US CAAA).  相似文献   

11.
Long-term spatial and temporal variations in nitrate-N concentrations along the River Derwent have been examined using Environment Agency data to investigate the relative importance of impacts of atmospheric N deposition, land use, and changes in management. Where moorland and rough grazing dominate upstream of Forge Valley and Malton, over the 20 years since 1988 mean nitrate-N concentrations were initially increasing significantly, but are now levelling off, with peaks at ca. 4.5 mg N l1. As expected in a catchment in a nitrate vulnerable zone (NVZ), more agricultural land use increases mean nitrate concentrations and the occurrence of distinct winter maxima, though the latter have become markedly less pronounced since 2001. It is suggested that this improvement is a combined effect of imposition of NVZ designation in the lower reaches in 2002, animal number declines associated with the Foot & Mouth outbreak in the region in 2001, and the impact of farmers' responses to increasing fertilizer prices and to beneficial pollutant mineral N inputs from the atmosphere. Minima in nitrate-N concentrations in summer have become much less pronounced over the past decade and are typically ca. 60% higher in concentration than a decade earlier. This probably is attributable to the effects of pollutant-N leaching to depths in soil below the rooting zone when near surface biotic uptake is low in winter. The resultant N mineralization in summer enhances summer nitrate leaching. The Derwent is a relatively clean river; however, its entire catchment was designated justifiably as a NVZ in January 2009, apparently based upon a projected 95 percentile nitrate-N concentration > 11.29 mg l− 1 for 2010 based upon forward projection of data from 1990 to 2004 for Derwent Bridge. A survey of water quality in March 2009 showed that some agricultural areas are still making a significant contribution to the total nitrate level well downstream, at the point responsible for implementation of NVZ status. At 3 of the 29 sites sampled, nitrate concentration exceeded 60 mg l− 1.  相似文献   

12.
Seasonal and between stream variation (catchment dependent variation) in losses of organic and inorganic carbon via downstream transport and outgassing of CO2 into the atmosphere were studied in 11 small boreal catchments situated in close proximity to each other. Of these catchments four were undrained peatland rich catchments, four drained peatland rich catchments and three managed mineral soil-dominated catchments. Downstream export of total inorganic carbon (TIC) varied between 870 and 1400 kg km− 2 a− 1 and was rather consistent between the catchments, except in the case of the mineral soil-dominated catchment Kangaslampi, where export was only 420 kg km− 2 a− 1. The export of total organic carbon (TOC) varied between 2300 and 14,800 kg km− 2 a− 1 and was highest in peatland rich catchments. Peatland drainage decreased TIC and TOC concentrations in the long term, but did not affect lateral carbon export due to increased runoff from the catchments. Partial pressure of CO2 in streams was the highest in undrained peatland rich catchments, but the outgassing of CO2 into the atmosphere was also high from drained peatlands due to the higher discharge rate and long ditch networks. In mineral soil-dominated catchments both downstream export of carbon and emission into the atmosphere were low. TOC exports were compared in two climatically different years (2003 and 2007). The results indicate that climate change might alter the timing of the TOC export from the catchments, the importance of the spring ice melt diminishing and both snow cover and snow free period export increasing.  相似文献   

13.
Riparian wetlands bordering intensively managed agricultural fields can act as biological filters that retain and transform agrochemicals such as nitrate and pesticides. Nitrate removal in wetlands has usually been attributed to denitrification processes which in turn imply the production of greenhouse gases (CO2 and N2O). Denitrification processes were studied in the Salburua wetland (northern Spain) by using undisturbed soil columns which were subsequently divided into three sections corresponding to A-, Bg- and B2g-soil horizons. Soil horizons were subjected to leaching with a 200 mg NO3 L− 1 solution (rate: 90 mL day− 1) for 125 days at two different temperatures (10 and 20 °C), using a new experimental design for leaching assays which enabled not only to evaluate leachate composition but also to measure gas emissions during the leaching process. Column leachate samples were analyzed for NO3 concentration, NH4+ concentration, and dissolved organic carbon. Emissions of greenhouse gases (CO2 and N2O) were determined in the undisturbed soil columns. The A horizon at 20 °C showed the highest rates of NO3 removal (1.56 mg N-NO3 kg−1 DW soil day− 1) and CO2 and N2O production (5.89 mg CO2 kg−1 DW soil day− 1 and 55.71 μg N-N2O kg−1 DW soil day− 1). For the Salburua wetland riparian soil, we estimated a potential nitrate removal capacity of 1012 kg N-NO3 ha− 1 year− 1, and potential greenhouse gas emissions of 5620 kg CO2 ha− 1 year− 1 and 240 kg N-N2O ha− 1 year− 1.  相似文献   

14.
The temporal variability of nitrate transport was monitored continuously in a large agricultural catchment, the 1110 km2 Save catchment in south-west France, from January 2007 to June 2009. The overall aim was to analyse the temporal transport of nitrate through hydrological response during flood events in the catchment. Nitrate loads and hysteresis were also analysed and the relationships between nitrate and hydro-climatological variables within flood events were determined. During the study period, 19 flood events were analysed using extensive datasets obtained by manual and automatic sampling. The maximum NO3 concentration during flood varied from 8.2 mg l−1 to 41.1 mg l−1 with flood discharge from 6.75 m3 s−1 to 112.60 m3 s−1. The annual NO3 loads in 2007 and 2008 amounted to 2514 t and 3047 t, respectively, with average specific yield of 2.5 t km−12 yr−1. The temporal transport of nitrate loads during different seasonal flood events varied from 12 t to 909 t. Nitrate transport during flood events amounted to 1600 t (64% of annual load; 16% of annual duration) in 2007 and 1872 t (62% of annual load; 20% of annual duration) in 2008. The level of peak discharge during flood events did not control peak nitrate concentrations, since similar nitrate peaks were produced by different peak discharges. Statistically strong correlations were found between nitrate transport and total precipitation, flood duration, peak discharge and total water yield. These four variables may be the main factors controlling nitrate export from the Save catchment. The relationship between nitrate and discharge (hysteresis patterns) investigated through flood events in this study was mainly dominated by anticlockwise behaviour.  相似文献   

15.
The ability of woody vegetation to remove nitrogen from septic tank leachate was studied in pine upland, oak upland and hardwood wetland habitats of the New Jersey Pinelands. The study was stimulated by the incorporation of a term for plant uptake in nutrient dilution models used for Pinelands land-use management decisions. Plant response was studied at sites involving septic tank leach fields and matched control sites for each habitat type. At each site, total biomass, net production, and tissue N concentrations for the dominant species was determined. The hardwood wetland habitat had a total biomass of 15.9 MT ha−1, a net primary production of 5.4 MT ha−1yr−1 and a net N uptake 75–80 kg N ha−1yr−1. Tissue N values for wetland trees and shrubs did not show significant differences between control and experimental sites. The pine upland communities had a biomass of 55 MT ha−1 and a net production of 5.7 MT ha−1yr−1; net N uptake ranged from 45 kg N ha−1yr−1 (control sites) to 56 kg N ha−1yr−1, (experimental sites). The oak upland communities had a biomass of 59 MT ha−1 and a net primary production of 5.0 MT ha−1yr−1; net uptake ranged from 55 kg N ha−1yr−1 in the control sites to 69.3 kg N ha−1yr−1. Tissue N concentrations showed significant increases for tree but not shrub species in both upland habitats. The capacity of the upland woody plants to increase N uptake and storage appears to be related to rooting depth and to the proximity of the plants to the drain tile: only plants with deep taproots, growing close to (within 1 m) the trench showed significant increases in uptake. It is suggested that only by augmenting appropriate natural vegetation with supplementary tree plantings can upland vegetation be utilized to reduce nitrogen movement to groundwater from septic systems in sandy soil; vegetation at naturally-occurring densities will not have a significant effect on water quality.  相似文献   

16.
The Integrated Catchment Model of Nitrogen (INCA-N) was applied to the River Lambourn, a Chalk river-system in southern England. The model's abilities to simulate the long-term trend and seasonal patterns in observed stream water nitrate concentrations from 1920 to 2003 were tested. This is the first time a semi-distributed, daily time-step model has been applied to simulate such a long time period and then used to calculate detailed catchment nutrient budgets which span the conversion of pasture to arable during the late 1930s and 1940s. Thus, this work goes beyond source apportionment and looks to demonstrate how such simulations can be used to assess the state of the catchment and develop an understanding of system behaviour. The mass-balance results from 1921, 1922, 1991, 2001 and 2002 are presented and those for 1991 are compared to other modelled and literature values of loads associated with nitrogen soil processes and export. The variations highlighted the problem of comparing modelled fluxes with point measurements but proved useful for identifying the most poorly understood inputs and processes thereby providing an assessment of input data and model structural uncertainty. The modelled terrestrial and instream mass-balances also highlight the importance of the hydrological conditions in pollutant transport. Between 1922 and 2002, increased inputs of nitrogen from fertiliser, livestock and deposition have altered the nitrogen balance with a shift from possible reduction in soil fertility but little environmental impact in 1922, to a situation of nitrogen accumulation in the soil, groundwater and instream biota in 2002. In 1922 and 2002 it was estimated that approximately 2 and 18 kg N ha− 1 yr− 1 respectively were exported from the land to the stream. The utility of the approach and further considerations for the best use of models are discussed.  相似文献   

17.
An estimated 32,000 golf courses worldwide (approximately 25,600 km2), provide ecosystem goods and services and support an industry contributing over $124 billion globally. Golf courses can impact positively on local biodiversity however their role in the global carbon cycle is not clearly understood. To explore this relationship, the balance between plant-soil system sequestration and greenhouse gas emissions from turf management on golf courses was modelled. Input data were derived from published studies of emissions from agriculture and turfgrass management. Two UK case studies of golf course type were used, a Links course (coastal, medium intensity management, within coastal dune grasses) and a Parkland course (inland, high intensity management, within woodland).Playing surfaces of both golf courses were marginal net sources of greenhouse gas emissions due to maintenance (Links 0.4 ± 0.1 Mg CO2e ha− 1 y− 1; Parkland 0.7 ± 0.2 Mg CO2e ha− 1 y− 1). A significant proportion of emissions were from the use of nitrogen fertiliser, especially on tees and greens such that 3% of the golf course area contributed 16% of total greenhouse gas emissions. The area of trees on a golf course was important in determining whole-course emission balance. On the Parkland course, emissions from maintenance were offset by sequestration from trees which comprised 48% of total area, resulting in a net balance of −4.3 ± 0.9 Mg CO2e ha− 1 y− 1. On the Links course, the proportion of trees was much lower (2%) and sequestration from links grassland resulted in a net balance of 0.0 ± 0.2 Mg CO2e ha− 1 y− 1. Recommendations for golf course management and design include the reduction of nitrogen fertiliser, improved operational efficiency when mowing, the inclusion of appropriate tree-planting and the scaling of component areas to maximise golf course sequestration capacity. The findings are transferrable to the management and design of urban parks and gardens, which range between fairways and greens in intensity of management.  相似文献   

18.
Annual paddy rice-winter wheat rotation constitutes one of the typical cropping systems in southeast China, in which various water regimes are currently practiced during the rice-growing season, including continuous flooding (F), flooding-midseason drainage-reflooding (F-D-F), and flooding-midseason drainage-reflooding and moisture but without waterlogging (F-D-F-M). We conducted a field experiment in a rice-winter wheat rotation system to gain an insight into the water regime-specific emission factors and background emissions of nitrous oxide (N2O) over the whole annual cycle. While flooding led to an unpronounced N2O emission during the rice-growing season, it incurred substantial N2O emission during the following non-rice season. During the non-rice season, N2O fluxes were, on average, 2.61 and 2.48 mg N2O-N m2 day− 1 for the 250 kg N ha− 1 applied plots preceded by the F and F-D-F water regimes, which are 56% and 49% higher than those by the F-D-F-M water regime, respectively. For the annual rotation system experienced by continuous flooding during the rice-growing season, the relationship between N2O emission and nitrogen input predicted the emission factor and background emission of N2O to be 0.87% and 1.77 kg N2O-N ha− 1, respectively. For the plots experienced by the water regimes of F-D-F and F-D-F-M, the emission factors of N2O averaged 0.97% and 0.85%, with background N2O emissions of 2.00 kg N2O-N ha− 1 and 1.61 kg N2O-N ha− 1 for the annual rotation system, respectively. Annual direct N2O-N emission was estimated to be 98.1 Gg yr− 1 in Chinese rice-based cropping systems in the 1990s, consisting of 32.3 Gg during the rice-growing season and 65.8 Gg during the non-rice season, which accounts for 25-35% of the annual total emission from croplands in China.  相似文献   

19.
An estimated 32,000 golf courses worldwide (approximately 25,600 km2), provide ecosystem goods and services and support an industry contributing over $124 billion globally. Golf courses can impact positively on local biodiversity however their role in the global carbon cycle is not clearly understood. To explore this relationship, the balance between plant-soil system sequestration and greenhouse gas emissions from turf management on golf courses was modelled. Input data were derived from published studies of emissions from agriculture and turfgrass management. Two UK case studies of golf course type were used, a Links course (coastal, medium intensity management, within coastal dune grasses) and a Parkland course (inland, high intensity management, within woodland).Playing surfaces of both golf courses were marginal net sources of greenhouse gas emissions due to maintenance (Links − 2.2 ± 0.4 Mg CO2e ha− 1 y− 1; Parkland − 2.0 ± 0.4 Mg CO2e ha− 1 y− 1). A significant proportion of emissions were from the use of nitrogen fertiliser, especially on tees and greens such that 3% of the golf course area contributed 16% of total greenhouse gas emissions. The area of trees on a golf course was important in determining whole-course emission balance. On the Parkland course, emissions from maintenance were offset by sequestration from turfgrass, and trees which comprised 48% of total area, resulting in a net balance of − 5.4 ± 0.9 Mg CO2e ha− 1 y− 1. On the Links course, the proportion of trees was much lower (2%) and sequestration from links grassland resulted in a net balance of − 1.6 ± 0.3 Mg CO2e ha− 1 y− 1. Recommendations for golf course management and design include the reduction of nitrogen fertiliser, improved operational efficiency when mowing, the inclusion of appropriate tree-planting and the scaling of component areas to maximise golf course sequestration capacity. The findings are transferrable to the management and design of urban parks and gardens, which range between fairways and greens in intensity of management.  相似文献   

20.
Changes in the relationship between soluble reactive phosphorus (SRP) concentration and river flow between 1966 and 2006 were assessed for the River Frome, UK using the recently developed Load Apportionment Model. The resulting source load estimates gave good agreement with known changes within the catchment. The model indicated an increase in point source contribution to the total river load from 46% to 62% between 1970 and 1985. This corresponded with the population increase within the catchment during that time. The predicted mean SRP load was highest between 1996 and 2000 (30 t y− 1), with 49% coming from point sources. Despite no lowering in population or major changes in agricultural practice, the model predicted a reduced load of 18.1 t y− 1 for the period 2001 to 2005, due mainly to a decrease in point source inputs from 14.6 t y− 1 to 6.1 t y− 1 (equivalent to 34% of the total load). This prediction matches the major improvements in sewage treatment that occurred within the catchment in 2002. This study thus provides a major validation of the Load Apportionment Model. The model provides an effective and rapid method of determining past changes in phosphorus sources, based entirely on the P concentration - flow relationship: critically, it does not require any historical information on land use, fertiliser application rates, topography, soil types and sewage inputs. Further decreases in SRP concentration in the River Frome during the algal growing season would be best achieved by further reductions of STW inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号