首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyanobacterial blooms are continuously critical challenges in drinking water systems which can have various negative impacts such as production of taste, odour and toxic compounds. Furthermore, the intracellular metabolites could be released into surrounding waters when the cyanobacterial membranes are destroyed. Although a variety of techniques have been developed to control cyanobacterial blooms and remove cyanobacterial cells or metabolites in water treatment processes, the effect of these treatments on the membrane integrity of cyanobacterial cells have not been systematically studied and compared. This study evaluated the effectiveness of copper sulphate (CuSO4), chlorine, potassium permanganate (KMnO4), hydrogen peroxide (H2O2) and ozone on the cell integrity and densities of Microcystis aeruginosa. All of these technologies can compromise the cell membrane of cyanobacteria to varying degrees. Chlorine showed the strongest ability to impair the cell integrity with a majority (≥88%) of the cells compromised within the first minute and with the cell lysis rates ranging of 0.640–3.82 h−1 during 1–60 min. Ozone dose of 6 mg L−1 also could induce 90% lysis of the cyanobacterial cells in 5 min and the cell lysis rate of KMnO4 (10 mg L−1) was 0.829 h−1. CuSO4 and H2O2 could not only destroy the viability of cyanobacterial cells but also showed algistatic potential over the 7 day treatment. The potential of all the oxidants (chlorine, KMnO4, H2O2 and ozone) considered as algicides were discussed in this study. The benefits and drawbacks of these control and water treatment options were assessed as well.  相似文献   

2.
Jo CH  Dietrich AM  Tanko JM 《Water research》2011,45(8):2507-2516
Advanced treatment technologies that control multiple contaminants are beneficial to drinking water treatment. This research applied UV/H2O2 for the simultaneous degradation of geosmin, 2-methylisoborneol, four trihalomethanes and six haloacetic acids. Experiments were conducted in de-ionized water at 24 ± 1.0 °C with ng/L amounts of odorants and μg/L amounts of disinfection byproducts. UV was applied with and without 6 mg/L H2O2. The results demonstrated that brominated trihalomethanes and brominated haloacetic acids were degraded to a greater extent than geosmin and 2-methylisoborneol. Tribromomethane and dibromochloromethane were degraded by 99% and 80% respectively at the UV dose of 1200 mJ/cm2 with 6 mg/L H2O2, whereas 90% of the geosmin and 60% of the 2-methylisoborneol were removed. Tribromoacetic acid and dibromoacetic acid were degraded by 99% and 80% respectively under the same conditions. Concentrations of trichloromethane and chlorinated haloacetic acids were not substantially reduced under these conditions and were not effectively removed at doses designed to remove geosmin and 2-methylisoborneol. Brominated compounds were degraded primarily by direct photolysis and cleavage of the C-Br bond with pseudo first order rate constants ranging from 10−3 to 10−2 s−1. Geosmin and 2-methylisoborneol were primarily degraded by reaction with hydroxyl radical with direct photolysis as a minor factor. Perchlorinated disinfection byproducts were degraded by reaction with hydroxyl radicals. These results indicate that the UV/H2O2 can be applied to effectively control both odorants and brominated disinfection byproducts.  相似文献   

3.
Hydrogen peroxide (H2O2) was measured in the surf zone at 13 bathing beaches in Southern California, USA. Summer dry season concentrations averaged 122 ± 38 nM with beaches with tide pools having lower levels (50-90 nM). No significant differences were observed for ebb waters at a salt marsh outlet vs. a beach (179 ± 20 vs. 163 ± 26 nM), and between ebb and flood tides at one site (171 ± 24 vs. 146 ± 42 nM). H2O2 levels showed little annual variation. Diel cycling was followed over short (30 min; 24 h study) and long (d) time scales, with maximum afternoon concentration = 370 nM and estimated photochemical production rate of 44 nM h−1. There was no correlation between the absorbance coefficient at 300 nm (used as a measure of chromophoric dissolved organic matter (CDOM) levels) and H2O2. H2O2 concentrations measured in this study are likely sufficient to inhibit fecal indicator bacteria in marine recreational waters through indirect photoinactivation.  相似文献   

4.
The energy consumptions of conventional ozonation and the AOPs O3/H2O2 and UV/H2O2 for transformation of organic micropollutants, namely atrazine (ATR), sulfamethoxazole (SMX) and N-nitrosodimethylamine (NDMA) were compared. Three lake waters and a wastewater were assessed. With p-chlorobenzoic acid (pCBA) as a hydroxyl radical (OH) probe compound, we experimentally determined the rate constants of organic matter of the selected waters for their reaction with OH (kOH,DOM), which varied from 2.0 × 104 to 3.5 × 104 L mgC−1 s−1. Based on these data we calculated OH scavenging rates of the various water matrices, which were in the range 6.1-20 × 104 s−1. The varying scavenging rates influenced the required oxidant dose for the same degree of micropollutant transformation. In ozonation, for 90% pCBA transformation in the water with the lowest scavenging rate (lake Zürich water) the required O3 dose was roughly 2.3 mg/L, and in the water with the highest scavenging rate (Dübendorf wastewater) it was 13.2 mg/L, corresponding to an energy consumption of 0.035 and 0.2 kWh/m3, respectively. The use of O3/H2O2 increased the rate of micropollutant transformation and reduced bromate formation by 70%, but the H2O2 production increased the energy requirements by 20-25%. UV/H2O2 efficiently oxidized all examined micropollutants but energy requirements were substantially higher (For 90% pCBA conversion in lake Zürich water, 0.17-0.75 kWh/m3 were required, depending on the optical path length). Energy requirements between ozonation and UV/H2O2 were similar only in the case of NDMA, a compound that reacts slowly with ozone and OH but is transformed efficiently by direct photolysis.  相似文献   

5.
The destruction of the commonly found cyanobacterial toxin, microcystin-LR (MC-LR), in surface waters by UV-C/H2O2 advanced oxidation process (AOP) was studied. Experiments were carried out in a bench scale photochemical apparatus with low pressure mercury vapor germicidal lamps emitting at 253.7 nm. The degradation of MC-LR was a function of UV fluence. A 93.9% removal with an initial MC-LR concentration of 1 μM was achieved with a UV fluence of 80 mJ/cm2 and an initial H2O2 concentration of 882 μM. When increasing the concentration of MC-LR only, the UV fluence-based pseudo-first order reaction rate constant generally decreased, which was probably due to the competition between by-products and MC-LR for hydroxyl radicals. An increase in H2O2 concentration led to higher removal efficiency; however, the effect of HO scavenging by H2O2 became significant for high H2O2 concentrations. The impact of water quality parameters, such as pH, alkalinity and the presence of natural organic matter (NOM), was also studied. Field water samples from Lake Erie, Michigan and St. Johns River, Florida were employed to evaluate the potential application of this process for the degradation of MC-LR. Results showed that the presence of both alkalinity (as 89.6-117.8 mg CaCO3/L) and NOM (as ∼2 to ∼9.5 mg/L TOC) contributed to a significant decrease in the destruction rate of MC-LR. However, a final concentration of MC-LR bellow the guideline value of 1 μg/L was still achievable under current experimental conditions when an initial MC-LR concentration of 2.5 μg/L was spiked into those real water samples.  相似文献   

6.
Siva Sarathy 《Water research》2010,44(14):4087-6140
The advanced oxidation process utilizing ultraviolet and hydrogen peroxide (UV/H2O2) is currently applied in commercial drinking water applications for the removal of various organic pollutants. Natural organic matter (NOM) present in the source water can also be oxidized and undergo changes at the fluence and H2O2 concentrations applied in commercial drinking water UV/H2O2 applications (fluences less than 2000 mJ cm−2, initial H2O2 concentrations less than 15 mg L−1). In this study, the impact of UV/H2O2 on NOM’s aromaticity, hydrophobicity, and potential to form trihalomethanes (THMs) and haloacetic acids (HAAs) was investigated for raw surface water and the same water with the very hydrophobic acid (VHA) fraction of NOM removed. During UV/H2O2 treatments, NOM in the raw surface water was partially oxidized to less aromatic and hydrophobic characteristics, but was not mineralized, confirming findings from past research. Below fluences of 1500 mJ cm−2 UV/H2O2 treatment of the raw water did not lead to reduction in the formation potential of THMs. The formation potential of HAAs was reduced at a fluence of 500 mJ cm−2 with only small additional reductions as fluence further increased. For the water from which the VHA fraction was removed, UV/H2O2 treatment led to mineralization of NOM suggesting that, when coupled with a pre-treatment capable of removing the VHA fraction, UV/H2O2 could achieve further reductions in NOM. These subsequent reductions in NOM led to continuous reductions in the formation potentials of THMs and HAAs as fluence increased.  相似文献   

7.
This article examines the oxidative disposal of Prozac® (also known as Fluoxetine, FXT) through several oxidative processes with and without UV irradiation: for example, TiO2 alone, O3 alone, and the hybrid methods comprised of O3 + H2O2 (PEROXONE process), TiO2 + O3 and TiO2 + O3 + H2O2 at the laboratory scale. Results show a strong pH dependence of the adsorption of FXT on TiO2 and the crucial role of adsorption in the whole degradation process. Photolysis of FXT is remarkable only under alkaline pH. The heterogeneous photoassisted process removes 0.11 mM FXT (initial concentration) within ca. 60 min with a concomitant 50% mineralization at pH 11 (TiO2 loading, 0.050 g L−1). The presence of H2O2 enhances the mineralization further to >70%. UV/ozonation leads to the elimination of FXT to a greater extent than does UV/TiO2: i.e., 100% elimination of FXT is achieved by UV/O3 in the first 10 min of reaction and almost 97% mineralization is attained under UV irradiation in the presence of H2O2. The hybrid configuration UV + TiO2 + O3 + H2O2 enhances removal of dissolved organic carbon (DOC) in ca. 30 min leaving, however, an important inorganic carbon (IC) content. In all cases, the presence of H2O2 improves the elimination of DOC, but not without a detrimental effect on the biodegradability of FXT owing to the low organic carbon content in the final treated effluent, together with significant levels of inorganic byproducts remaining. The photoassisted TiO2/O3 hybrid method may prove to be an efficient combination to enhance wastewater treatment of recalcitrant drug pollutants in aquatic environments.  相似文献   

8.
Liu K  Roddick FA  Fan L 《Water research》2012,46(10):3229-3239
While reverse osmosis (RO) technology is playing an increasingly important role in the reclamation of municipal wastewater, safe disposal of the resulting RO concentrate (ROC), which can have high levels of effluent organic pollutants, remains a challenge to the water industry. The potential of UVC/H2O2 treatment for degrading the organic pollutants and increasing their biodegradability has been demonstrated in several studies, and in this work the impact of the water quality variables pH, salinity and initial organic concentration on the UVC/H2O2 (3 mM) treatment of a municipal ROC was investigated. The reduction in chemical oxygen demand and dissolved organic carbon was markedly faster and greater under acidic conditions, and the treatment performance was apparently not affected by salinity as increasing the ROC salinity 4-fold had only minimal impact on organics reduction. The biodegradability of the ROC (as indicated by biodegradable dissolved organic carbon (BDOC) level) was at least doubled after 2 h UVC/H2O2 treatment under various reaction conditions. However, the production of biodegradable intermediates was limited after 30 min treatment, which was associated with the depletion of the conjugated compounds. Overall, more than 80% of the DOC was removed after 2 h UVC/3 mM H2O2 treatment followed by biological treatment (BDOC test) for the ROC at pH 4-8.5 and electrical conductivity up to 11.16 mS/cm. However, shorter UV irradiation time gave markedly higher energy efficiency (e.g., EE/O 50 kWh/m3 at 30 min (63% DOC removal) cf. 112 kWh/m3 at 2 h). No toxicity was detected for the treated ROC using Microtox® tests. Although the trihalomethane formation potential increased after the UVC/H2O2 treatment, it was reduced to below that of the raw ROC after the biological treatment.  相似文献   

9.
Lamsal R  Walsh ME  Gagnon GA 《Water research》2011,45(10):3263-3269
This study examined the impact of UV, ozone (O3), advanced oxidation processes (AOPs) including O3/UV, H2O2/UV H2O2/O3 in the change of molecular weight distribution (MWD) and disinfection by-product formation potential (DBPFP). Bench-scale experiments were conducted with surface river water and changes in the UV absorbance at 254 nm (UV254), total organic carbon (TOC), trihalomethane and haloacetic acid formation potential (THMFP, HAAFP) and MWD of the raw and oxidized water were analyzed to evaluate treatment performance. Combination of O3 and UV with H2O2 was found to result in more TOC and UV254 reduction than the individual processes. The O3/UV process was found to be the most effective AOP for NOM reduction, with TOC and UV254 reduced by 31 and 88%, respectively. Application of O3/UV and H2O2/UV treatments to the source waters organics with 190-1500 Da molecular weight resulted in the near complete alteration of the molecular weight of NOM from >900 Da to <300 Da H2O2/UV was found to be the most effective treatment for the reduction of THM and HAA formation under uniform formation conditions. These results could hold particular significance for drinking water utilities with low alkalinity source waters that are investigating AOPs, as there are limited published studies that have evaluated the treatment efficacy of five different oxidation processes in parallel.  相似文献   

10.
Environmentally-friendly disinfection methods are needed in many industrial applications. As a natural metabolite of many organisms, hydrogen peroxide (H2O2)-based disinfection may be such a method as long as H2O2 is used in non-toxic concentrations. Nevertheless, when applied alone as a disinfectant, H2O2 concentrations need to be high enough to achieve significant pathogen reduction, and this may lead to phytotoxicity. This paper shows how H2O2 disinfection concentrations could be significantly reduced by using the synergic lethality of H2O2 and sunlight the first time for fungi and disinfection. Experiments were performed on spores of Fusarium solani, the ubiquitous, pytho- and human pathogenic fungus. Laboratory (250-mL bottles) and pilot plant solar reactors (2 × 14 L compound parabolic collectors, CPCs) were employed with distilled water and real well water under natural sunlight. This opens the way to applications for agricultural water resources, seed disinfection, curing of fungal skin infections, etc.  相似文献   

11.
Water treatment residual solids were examined in batch adsorption and column adsorption experiments using a groundwater from Halifax Regional Municipality that had an average arsenic concentration of 43 μg/L (±4.2 μg/L) and a pH of 8.1. The residual solids studied in this paper were from five water treatment plants, four surface water treatment plants that utilized either alum, ferric, or lime in their treatment systems, and one iron removal plant. In batch adsorption experiments, iron-based residual solids and lime-based residual solids pre-formed similarly to GFH, a commercially-available adsorbent, while alum-based residual solids performed poorly. Langmuir isotherm modeling showed that ferric residuals had the highest adsorptive capacity for arsenic (Qmax = 2230 mg/kg and 42,910 mg/kg), followed by GFH (Qmax = 640 mg/kg), lime (Qmax = 160 mg/kg) and alum (Qmax = <1 mg/kg and 3 mg/kg). Similarly, the maximum arsenic removal was >93% for the ferric and lime residuals and GFH, while the maximum arsenic removal was <49% for the alum residuals under the same conditions. In a column adsorption experiment, ferric residual solids achieved arsenic removal of >26,000 bed volumes before breakthrough past 10 μg As/L, whereas the effluent arsenic concentration from the GFH column was under the method detection limit at 28,000 bed volumes. Overall, ferric and lime water treatment residuals were promising adsorbents for arsenic adsorption from the groundwater, and alum water treatment residuals did not achieve high levels of arsenic adsorption.  相似文献   

12.
This study investigated the treatment performances of H2O2 oxidation alone and its combination with granular activated carbon (GAC) adsorption for raw leachate from the NENT landfill (Hong Kong) with a very low biodegradability ratio (BOD5/COD) of 0.08. The COD removal of refractory compounds (as indicated by COD values) by the integrated H2O2 and GAC treatment was evaluated, optimized and compared to that by H2O2 treatment alone with respect to dose, contact time, pH, and biodegradability ratio. At an initial COD concentration of 8000 mg/L and NH3-N of 2595 mg/L, the integrated treatment has substantially achieved a higher removal (COD: 82%; NH3-N: 59%) than the H2O2 oxidation alone (COD: 33%; NH3-N: 4.9%) and GAC adsorption alone (COD: 58%) at optimized experimental conditions (p ≤ 0.05; t-test). The addition of an Fe(II) dose at 1.8 g/L further improved the removal of refractory compounds by the integrated treatment from 82% to 89%. Although the integrated H2O2 oxidation and GAC adsorption could treat leachate of varying strengths, treated effluents were unable to meet the local COD limit of less than 200 mg/L and the NH3-N of lower than 5 mg/L. However, the integrated treatment significantly improved the biodegradability ratio of the treated leachate by 350% from 0.08 to 0.36, enabling the application of subsequent biological treatments for complementing the degradation of target compounds in the leachate prior to their discharge.  相似文献   

13.
Baeza C  Knappe DR 《Water research》2011,45(15):4531-4543
Factors controlling photolysis and UV/H2O2 photooxidation rates of the biochemically active compounds (BACs) sulfamethoxazole, sulfamethazine, sulfadiazine, trimethoprim, bisphenol A, and diclofenac were determined. Experiments were conducted with a quasi-collimated beam apparatus equipped with low-pressure UV lamps. The effects of pH, H2O2 concentration, and background water matrix (ultrapure water, lake water, wastewater treatment plant effluent) on BAC transformation rates were evaluated. For the sulfa drugs, solution pH affected direct photolysis rates but had little effect on the hydroxyl radical oxidation rate. For sulfamethoxazole, the neutral form photolyzed more easily than the anionic form while the reverse was the case for sulfamethazine and sulfadiazine. For trimethoprim, the hydroxyl radical oxidation rate was higher for the cationic form (pH 3.6) than for the neutral form (pH 7.85). Quantum yields and second order rate constants describing the reaction between the hydroxyl radical and BACs were determined and used together with background water quality data to predict fluence-based BAC transformation rate constants (k′). For both the lake water and wastewater treatment plant effluent matrices, predicted k′ values were generally in good agreement with experimentally determined k′ values. At typical UV/H2O2 treatment conditions (fluence = 540 mJ cm−2, H2O2 dose = 6 mg L−1), BAC transformation percentages in North Carolina lake water ranged from 43% for trimethoprim to 98% for diclofenac. In wastewater treatment plant effluent, BAC transformation percentages were lower (31-97%) at the same treatment conditions because the hydroxyl radical scavenging rate was higher.  相似文献   

14.
De Laat J  Dao YH  El Najjar NH  Daou C 《Water research》2011,45(17):5654-5664
The decomposition rate of H2O2 by iron(III)-nitrilotriacetate complexes (FeIIINTA) has been investigated over a large range of experimental conditions: 3 < pH < 11, [Fe(III)]T,0: 0.05-1 mM; [NTA]T,0/[Fe(III)]T,0 molar ratios : 1-250; [H2O2]0: 1 mM-4 M) and concentrations of HO radical scavengers: 0-53 mM. Spectrophotometric analyses revealed that reactions of H2O2 with FeIIINTA (1 mM) at neutral pH immediately lead to the formation of intermediates (presumably peroxocomplexes of FeIIINTA) which absorb light in the region 350-600 nm where FeIIINTA and H2O2 do not absorb. Kinetic experiments showed that the decomposition rates of H2O2 were first-order with respect to H2O2 and that the apparent first-order rate constants were found to be proportional to the total concentration of FeIIINTA complexes, were at a maximum at pH 7.95 ± 0.10 and depend on the [NTA]T,0/[Fe(III)]T,0 and [H2O2]0/[Fe(III)]T,0 molar ratios. The addition of increasing concentrations of tert-butanol or sodium bicarbonate significantly decreased the decomposition rate of H2O2, suggesting the involvement of HO radicals in the decomposition of H2O2. The decomposition of H2O2 by FeIIINTA at neutral pH was accompanied by a production of dioxygen and by the oxidation of NTA. The degradation of the organic ligand during the course of the reaction led to a progressive decomplexation of FeIIINTA followed by a subsequent precipitation of iron(III) oxyhydroxides and by a significant decrease in the catalytic activity of Fe(III) species for the decomposition of H2O2.  相似文献   

15.
This study focuses on the removal of 32 selected micropollutants (pharmaceuticals, corrosion inhibitors and biocides/pesticides) found in an effluent coming from a municipal wastewater treatment plant (MWTP) based on activated sludge. Dissolved organic matter was present, with an initial total organic carbon of 15.9 mg L−1, and a real global quantity of micropollutants of 29.5 μg L−1. The treatments tested on the micropollutants removal were: UV-light emitting at 254 nm (UV254) alone, dark Fenton (Fe2+,3+/H2O2) and photo-Fenton (Fe2+,3+/H2O2/light). Different irradiation sources were used for the photo-Fenton experiences: UV254 and simulated sunlight. Iron and H2O2 concentrations were also changed in photo-Fenton experiences in order to evaluate its influence on the degradation. All the experiments were developed at natural pH, near neutral. Photo-Fenton treatments employing UV254, 50 mg L−1 of H2O2, with and without adding iron (5 mg L−1 of Fe2+ added or 1.48 mg L−1 of total iron already present) gave the best results. Global percentages of micropollutants removal achieved were 98 and a 97% respectively, after 30 min of treatments. As the H2O2 concentration increased (10, 25 and 50 mg L−1), best degradations were observed. UV254, Fenton, and photo-Fenton under simulated sunlight gave less promising results with lower percentages of removal.The highlight of this paper is to point out the possibility of the micropollutants degradation in spite the presence of DOM in much higher concentrations.  相似文献   

16.
Dao YH  De Laat J 《Water research》2011,45(11):3309-3317
The relative rates of degradation of three hydroxyl radical probe compounds (atrazine, fenuron and parachlorobenzoic acid (pCBA)) by FeIII/H2O2 (pH = 2.85), FeIIINTA/H2O2 (neutral pH), FeII/O2, FeIINTA/O2, FeII/H2O2 and FeIINTA/H2O2 (neutral pH) have been investigated using the competitive kinetic method. Experiments were carried out in batch and in semi-batch reactors, in the dark, at 25 °C. The data showed that the three probe compounds could be degraded by all the systems studied, and in particular by FeIINTA/H2O2 and FeIIINTA/H2O2 at neutral pH. The relative rate constants of degradation of the three probe compounds obtained for all the systems tested were identical and equal to 1.45 ± 0.03 and 0.47 ± 0.02 for kAtrazine/kpCBA and kFenuron/kpCBA, respectively. These values as well as the decrease of the rates of degradation of the probe compounds upon the addition of hydroxyl radical scavengers (tert-butanol, bicarbonate ions) suggest that the degradation of atrazine, fenuron and pCBA by FeIINTA/O2, FeIINTA/H2O2 and FeIIINTA/H2O2 is initiated by hydroxyl radicals.  相似文献   

17.
Degradation of a synthetic azo dye, Orange II, by electro-peroxone (E-peroxone) treatment was investigated. During the E-peroxone process, ozone generator effluent (O2 and O3 gas mixture) was continuously sparged into an electrolysis reactor, which was equipped with a carbon-polytetrafluorethylene (carbon-PTFE) cathode to electrochemically convert the sparged O2 to H2O2. The in-situ generated H2O2 then reacted with the sparged O3 to produce •OH, which can oxidize ozone-refractory organic pollutants effectively. Thus, by simply combining conventional ozonation and electrolysis processes, and using a cathode that can effectively convert O2 to H2O2, the E-peroxone process degraded Orange II much more effectively than the two processes individually. Complete decolorization and 95.7% total organic carbon (TOC) mineralization were obtained after 4 and 45 min of the E-peroxone treatment, respectively. In comparison, only 55.6 and 15.3% TOC were mineralized after 90 min of the individual ozonation and electrolysis treatments, respectively. In addition to its high efficiency, the E-peroxone process was effective over a wide range of pH (3–10) and did not produce any secondary pollutants. The E-peroxone process can thus provide an effective and environmentally-friendly alternative for wastewater treatment.  相似文献   

18.
The efficiency of classical Fenton (CF) and modified Fenton (MF) as well as photo-Fenton processes in real wastewater treatment of pulp and paper (P&P) mill was investigated in this study. The chemical oxygen demand (COD) was chosen as the reference measurement for evaluating the treatment's efficiency. After determining the optimum parameters for each process, the effect of adding ultrasound (US) on improving treatment efficiency was examined. In addition, kinetic study and phytotoxicity analysis were conducted under optimum conditions for all processes. With pH 4, reaction time 50 min, 1.2 g/L Fe2+ and 8 g/L H2O2 dosages, the best removal efficiency (RE) of COD was determined to be 82.18% in CF process, and this rate rose to 90.1% when US was added. The best RE in MF process was 84.16% with the application of UV-C, pH 4, reaction time 50 min, 1 g/L Fe0 and 8 g/L H2O2 doses, although it increased to 93.4% when US was applied. The greatest results in the seed germination test were achieved in US processes with 100% of germination percentage (GP) for spinach and tomato and 90% for cress. In the economic evaluation, when conducting the treatment without US, the estimated relative cost decreased in a 15 and 16%, for CF/UV-C and CF processes respectively, whereas the CF process was 64% cheaper than the MF process in all applications. The US contributed to enhanced water treatment efficiency by having a significant synergistic impact on Fenton applications. Hence, the combination of photo-Fenton and ultrasound to treat effluent from P&P mills proved to be an effective and promising technique.  相似文献   

19.
The oxidation of bromoxynil and trifluralin was investigated using ozone (O3) and O3 combined with hydrogen peroxide (H2O2) in natural waters using batch reactors. The results indicated that these pesticides could not be completely degraded during ozonation, achieving degradation levels lower than 50%. An enhancement of the level of degradation was observed using O3/H2O2 process. A biphasic behaviour of O3 was also observed. Depending on the experimental conditions, the rate constant for O3 decomposition was estimated to be between 7.4 × 10−4 s−1 to 5.8 × 10−2 s−1, and 3.2 × 10−3 s−1 to 4.2 × 10−2 s−1 for bromoxynil and trifluralin samples, respectively. Acute toxicity analysis performed using Microtox® showed a decrease in the toxic effects of the samples on the luminescent bacteria during the first few minutes of treatment, followed by an increase of the toxic effects at the end of the reaction for both pesticides. The quantification of oxidation by-products generated during treatment was also addressed. The total molar balances of the degradation by-products versus the initial pesticide concentrations ranged from 60 to 103% under different experimental conditions.  相似文献   

20.
Jin J  El-Din MG  Bolton JR 《Water research》2011,45(4):1890-1896
Several organic compounds were used as radical scavengers/reagents to investigate the possibility of the UV/chlorine process being used as an advanced oxidation process (AOP) in the treatment of drinking water and wastewater. The UV/H2O2 process was selected as a reference, so that the results from the UV/chlorine process could be compared with those of the UV/H2O2 process. Methanol was added to active chlorine solutions at both pH 5 and 10 and into hydrogen peroxide samples. The photodegradation quantum yields and the OH radical production yield factors, which are significant in evaluating AOPs, were calculated for both the UV/chlorine and the UV/H2O2 processes. The yield factor for the UV/chlorine process at pH 5 was 0.46 ± 0.09, which is much lower than that of the UV/H2O2 process, which reached 0.85 ± 0.04. In addition to methanol, para-chlorobenzoic acid (pCBA) and cyclohexanoic acid (CHA) were added to active chlorine solutions and to H2O2 solutions, to evaluate the efficiencies of oxidizing these organic compounds. The specific first-order reaction rate constants for the oxidation of pCBA and CHA, using the UV/chlorine process, were lower than those found using the UV/H2O2 process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号