首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
Uneven building layouts and non-uniform street canyons are common in actual urban morphology. To study the effects of building layouts on air flow in non-uniform street canyons, various building arrangements are designed in this study. Simulations are carried out under four cases (i.e., a uniform street canyon as Case 1 and three non-uniform canyons as Cases 2–4) with parameter change of the occupying ratio of high buildings (ORHB) in the computational domain and their bilateral allocation as well as the combinations of stepup and/or stepdown notches. In the three non-uniform canyons, stepup and stepdown notches are separating (with ORHB of 25% for Case 2 and 75% for Case 4) or adjoining (with ORHB of 50% for Case 3). The air flow and pollutant dispersion in these street canyons are investigated using Large-eddy Simulation (LES). The air flow structures in the non-uniform street canyons are more complicated than in the uniform street canyon. Inside the non-uniform street canyons, the tilting, horizontal divergence and convergence of wind streamlines are found. Large-scale air exchanges of air mass inside and above the street canyons are found as well. At the pedestrian level, the concentrations of simulated pollutants (e.g., the mean and maximum concentrations) in the non-uniform street canyons are lower than those in the uniform one, suggesting that uneven building layouts are capable of improving the dispersion of pollutants in urban area. Further studies on Case 2–4 show that the separation of stepup and stepdown notches along the street increases the wind velocities in the vicinity of high buildings, while the adjoining of stepup and stepdown notches decreases the wind velocities. Low concentrations of pollutant at the pedestrian level are found in Case 2 compared to Cases 3 and 4. Thus, the separation of stepup and stepdown notches in non-uniform street canyons might be a good choice for uneven building layout arrangements from the point of view of pollutant dispersion and human health.  相似文献   

2.
Dispersion of vehicular pollution through street canyons has been widely studied in order to find strategies for reducing concentration level. Recently, a pedestrian ventilation system (PVS), an active mitigation strategy, has been proposed to enhance pedestrian comfort indices and to induce appropriate air movement. This paper investigates the performance of PVS to control pollution dispersion within street canyons. Pollution control is achieved by exhausting/supplying air from/to the street canyon through the PVS. In the present paper, the effectiveness of these strategies was studied by varying the parameters that affect dispersion, such as aspect ratios (AR) and thermal stratifications.Computational Fluid Dynamics (CFD) has been selected as the investigation tool. Prior to simulations, the proposed model was successfully validated using two sets of experimental data. Four case-studies were also used to investigate the aspect ratio and the stratification effect. These test cases were developed based on small scale studies in a wind tunnel. Results show the ability of the PVS to change the airflow pattern through the street canyon, resulting in significant pollution removal, especially from the pedestrian level. Moreover, the air and pollution exchange rate concepts have been used for better evaluation of the PVS performance. Furthermore, a breakthrough index was proposed to evaluate the effect of the PVS airflow rate.  相似文献   

3.
As cities grow, automobile exhaust pollution is worsening, which has become a major problem of air pollution, even it is a serious threat to the physical and mental health of residents. Thus, to study its diffusion law and influential factors occupies a count for much position. The paper analyzes the factors that affect the dispersion of urban vehicle emissions in street canyon to evaluate the research method of pollutant dispersion. In addition, the influences of different wind speeds and wind directions, the roof shape of buildings on both street sides, and the relative height of the two sides of buildings on the street canyon, on airflow field and pollutant dispersion are simulated. It is shown that the wind speed, the wind direction and the buildings on both sides have a great impact on the airflow and contaminant dispersion in the street canyon. The results provide scientific basis for controlling, monitoring and evaluating the urban motor vehicle emissions, besides the reasonable layout and the programme of urban streets.  相似文献   

4.
Increased traffic emissions and reduced natural ventilation cause build up of high pollution levels in urban street canyons/intersections. Natural ventilation in urban streets canyons/intersections is restricted because the bulk of flow does not enter inside and pollutants are trapped in the lower region. Wind vortices, low-pressure zones and channeling effects may cause build up of pollutants under adverse meteorological conditions within urban street canyons. The review provides a comprehensive literature on wind tunnel simulation studies in urban street canyons/intersections including the effects of building configurations, canyon geometries, traffic induced turbulence and variable approaching wind directions on flow fields and exhaust dispersion.  相似文献   

5.
对街道峡谷污染问题的研究常采用实地测量、物理风洞试验和数值模拟等方法。本文采用数值模拟对城市街道峡谷汽车污染物的扩散规律进行了研究,从描述街道峡谷内空气流动和污染物扩散的控制方程出发,采用数值模拟的方法对街道内部的空气流动和污染物的扩散进行了模拟分析,并将结果与风洞试验结果进行比较,从而获得了城市街道峡谷汽车污染物的扩散规律。研究结果可以为城市街道大气污染监测、评价以及防治提供科学依据。  相似文献   

6.
This paper presents an experimental investigation of wind flow characteristics and air quality along a street canyon located within a dense urban area. Four typical models of a highly populated urban area are studied and wind tunnel experiments are carried out over an extended range of the applied wind directions. The building patterns are represented by 1:100 scale models, where wind velocity and tracer gas concentrations are measured along the two sides of the street. The study results provide evidence that building configurations and wind directions are very important factors in determining both wind flow and pollutant dispersion characteristics within urban domains. Also, the results demonstrate that gaps between buildings are a very important factor to be considered by urban planners and designers, because, for a given building height, larger gaps induce more wind in urban canyons, thus improving the ventilation process.  相似文献   

7.
Airflow and pollutant transport in street canyons   总被引:2,自引:0,他引:2  
In this work the dispersion of gaseous and particulate exhaust emissions in different street canyons were studied. For two-dimensional sections of canyon models airflow, pollutant dispersion and deposition patterns in the streets and on the surrounding buildings were analyzed. Effects of building size, street width, and wind velocity on the pollutant transport were examined. While the stress transport turbulence models were used in most of the analysis, the predictions of other turbulence models were also examined. Depending on wind speed, building height, and street width, it was found that large recirculation regions in canyons might form. Under certain conditions, also pollutants emitted from vehicle exhaust may trap inside the street canyon. Variations of transport and deposition of emitted particulate pollutants with particle size and relaxation time were also studied. It was shown that the amount of deposited particles in street canyons reduces when the wind speed increases. The simulation results were compared with the available wind tunnel experiments and favorable agreement was found.  相似文献   

8.
Dispersion characteristics of vehicle emission in an urban street canyon   总被引:5,自引:0,他引:5  
The dispersion of vehicle emission is limited by various factors existing in an urban environment, which may produce a poor air quality in an urban street canyon environment. This poor air quality has a high potential to be easily delivered into indoor air environment through building ventilation. In this study, the dispersion of vehicle emission was characterized by conducting wind tunnel tests and applying tracer gas techniques. The aspect ratio of a street canyon (i.e. the ratio of the width of a street and the average height of buildings) and the direction of external wind are the major test parameters. In addition to the simple data analysis of the results, a series of statistical analysis was also introduced to formulate the complex effects on the dispersion of vehicle emission. The updated result is presented in this article.  相似文献   

9.
Aerodynamic effects of trees on pollutant concentration in street canyons   总被引:3,自引:0,他引:3  
This paper deals with aerodynamic effects of avenue-like tree planting on flow and traffic-originated pollutant dispersion in urban street canyons by means of wind tunnel experiments and numerical simulations. Several parameters affecting pedestrian level concentration are investigated, namely plant morphology, positioning and arrangement. We extend our previous work in this novel aspect of research to new configurations which comprise tree planting of different crown porosity and stand density, planted in two rows within a canyon of street width to building height ratio W/H = 2 with perpendicular approaching wind. Sulfur hexafluoride was used as tracer gas to model the traffic emissions. Complementary to wind tunnel experiments, 3D numerical simulations were performed with the Computational Fluid Dynamics (CFD) code FLUENT™ using a Reynolds Stress turbulence closure for flow and the advection-diffusion method for concentration calculations. In the presence of trees, both measurements and simulations showed considerable larger pollutant concentrations near the leeward wall and slightly lower concentrations near the windward wall in comparison with the tree-less case. Tree stand density and crown porosity were found to be of minor importance in affecting pollutant concentration. On the other hand, the analysis indicated that W/H is a more crucial parameter. The larger the value of W/H the smaller is the effect of trees on pedestrian level concentration regardless of tree morphology and arrangement. A preliminary analysis of approaching flow velocities showed that at low wind speed the effect of trees on concentrations is worst than at higher speed. The investigations carried out in this work allowed us to set up an appropriate CFD modelling methodology for the study of the aerodynamic effects of tree planting in street canyons. The results obtained can be used by city planners for the design of tree planting in the urban environment with regard to air quality issues.  相似文献   

10.
Airflow pattern through street canyons has been widely studied to understand the nature of pollution dispersion in order to develop guidelines for urban planners. One of the major contributing parameters in pollution dispersion is thermal-induced flow caused by surface and air temperature difference. However, most of the previous studies assumed isothermal condition for street canyons. Those addressed the thermal-induced flow, have assumed a uniform wall surface temperature distribution. The external building wall surface temperature distribution is not uniform, and is influenced by many factors including the wall surface characteristics, and shading. The non-uniform temperature distribution significantly impacts on 3-dimensional airflow within street canyons. Moreover, effect of intersection is barely considered in the literature where L/H<3 (L and H are respectively length and height of street canyon). This Paper reports the development of a 3-dimensional model to study the effect of non-uniform wall surface temperature distribution on the pollution dispersion and flow pattern within the short street canyons (L/H<3). For this purpose, a computational fluid dynamics (CFD) model is developed to investigate these effects on pollution dispersion in various prevailing wind velocities and directions. Moreover, active and passive techniques to reduce the level of concentration are examined. The study clearly shows that thermal-induced flow dominates during fair-weather condition.  相似文献   

11.
Introduction to the DAPPLE Air Pollution Project   总被引:1,自引:0,他引:1  
The Dispersion of Air Pollution and its Penetration into the Local Environment (DAPPLE) project brings together a multidisciplinary research group that is undertaking field measurements, wind tunnel modelling and computer simulations in order to provide better understanding of the physical processes affecting street and neighbourhood-scale flow of air, traffic and people, and their corresponding interactions with the dispersion of pollutants at street canyon intersections. The street canyon intersection is of interest as it provides the basic case study to demonstrate most of the factors that will apply in a wide range of urban situations. The aims of this paper are to introduce the background of the DAPPLE project, the study design and methodology for data collection, some preliminary results from the first field campaign in central London (28 April-24 May 2003) and the future for this work. Updated information and contact details are available on the web site at http://www.dapple.org.uk.  相似文献   

12.
Urban climate can have severe impacts on people who use outdoor spaces within a city. In its essence, urban climate is directly linked to the configuration of street axes, building heights and their attributes. Thus, the role of urban planners can be crucial for guaranteeing outdoor thermal comfort and air quality in open spaces. This paper presents observed and estimated relations between urban morphology and changes in microclimate and air quality within a city center. Two approaches are presented, showing results of field measurements and urban climate simulations using the ENVI-met software suite. From measured microclimatic data and comfort surveys, carried out in downtown Curitiba, Brazil, the impact of street geometry on ambient temperatures and on daytime pedestrian comfort levels was evaluated, using the sky-view factor (SVF) as indicator of the complexity of the urban geometry. The impact of street orientation relative to prevailing winds and the resulting effects of ventilation (air speed and spatial distribution) on the dispersion of traffic-generated air pollutants were additionally analyzed by means of computer simulations. Results show the impact of urban geometry on human thermal comfort in pedestrian streets and on the outcomes of pollutant dispersion scenarios.  相似文献   

13.
A double-lane four-arm roundabout, where traffic movement is continuous in opposite directions and at different speeds, produces a zone responsible for recirculation of emissions within a road section creating canyon-type effect. In this zone, an effect of thermally induced turbulence together with vehicle wake dominates over wind driven turbulence causing pollutant emission to flow within, resulting into more or less equal amount of pollutants upwind and downwind particularly during low winds. Beyond this region, however, the effect of winds becomes stronger, causing downwind movement of pollutants. Pollutant dispersion caused by such phenomenon cannot be described accurately by open-terrain line source model alone. This is demonstrated by estimating one-minute average carbon monoxide concentration by coupling an open-terrain line source model with a street canyon model which captures the combine effect to describe the dispersion at non-signalized roundabout. The results of the modeling matched well with the measurements compared with the line source model alone and the prediction error reduced by about 50%. The study further demonstrated this with traffic emissions calculated by field and semi-empirical methods.  相似文献   

14.
In the present study, assessment of wind environment within the pedestrian level domains of highly populated areas is carried out. Three typical models of a dense urban area are considered and numerically simulated in order to examine the effects of the geometry of such models on wind flow characteristics within the pedestrian domain of a street canyon located within this area. The calculated flow fields are employed to estimate the exceedance probabilities within the study domain using a new approach: average wind kinetic energy. The study is applied to Tokyo, Japan; based on its mean wind velocity data. The results demonstrate that the exceedance probability analysis of the pedestrian wind environment could be a valuable tool for assessing urban areas. Also, the calculated probabilities demonstrate substantial dependence on both the geometry of building arrays and the wind conditions of the considered domain.  相似文献   

15.
The objective of this study is to investigate numerically the effect of wedge-shaped roofs on wind flow and pollutant dispersion in a street canyon within an urban environment. A two-dimensional computational fluid dynamics (CFD) model for evaluating airflow and pollutant dispersion within an urban street canyon is firstly developed using the FLUENT code, and then validated against the wind tunnel experiment. It was found that the model performance is satisfactory. Having established this, the wind flow and pollutant dispersion in urban street canyons of sixteen different wedge-shaped roof combinations are simulated. The computed velocity fields and concentration contours indicate that the in-canyon vortex dynamics and pollutant distriburtion are strongly dependent on the wedge-shaped roof configurations: (1) the height of a wedge-shaped roof peak is a crucial parameter determining the in-canyon vortex structure when an upward wedge-shaped roof is placed on the upwind building of a canyon; (2) both the heights of upstream and downstream corners of the upwind building have a significant impact on the in-canyon vortical flow when a downward wedge-shaped roof is placed on the upwind building of a canyon, due to flow separation as wind passes through the roof peak; (3) the height of upstream corner of the downwind building is an important factor deciding the in-canyon flow pattern when a wedge-shaped roof is placed on the downwind building of a canyon; (4) the characteristics of pollutant dispersion vary for different wedge-shaped roof configurations, and pollution levels are much higher in the “step-down” canyons relative to the “even” and “step-up” ones.  相似文献   

16.
The effects of inflow turbulence intensity on flow and pollutant dispersion in an urban street canyon with a street aspect ratio of 1 are examined using a two-dimensional numerical model. As the inflow turbulence intensity increases, turbulent kinetic energy and turbulent diffusivity in the street canyon increases. Also, the mean horizontal velocity near the roof level increases and the street-canyon vortex strengthens. The analyses of the time series and residue ratio of pollutant concentration show that the inflow turbulence intensity significantly affects pollutant concentration in the street canyon. As the inflow turbulence intensity increases, the pollutant concentration in the street canyon becomes low and hence more pollutants escape from the street canyon.  相似文献   

17.
There have been many studies concerning dispersion of gaseous pollutants from vehicles within street canyons; fewer address the dispersion of particulate matter, particularly particle number concentrations separated into the nucleation (10-30 nm or N10-30) or accumulation (30-300 nm or N30-300) modes either separately or together (N10-300). This study aimed to determine the effect of wind direction and speed on particle dispersion in the above size ranges. Particle number distributions (PNDs) and concentrations (PNCs) were measured in the 5-2738 nm range continuously (and in real-time) for 17 days between 7th and 23rd March 2007 in a regular (aspect ratio approximately unity) street canyon in Cambridge (UK), using a newly developed fast-response differential mobility spectrometer (sampling frequency 0.5 Hz), at 1.60 m above the road level. The PNCs in each size range, during all wind directions, were better described by a proposed two regime model (traffic-dependent and wind-dependent mixing) than by simply assuming that the PNC was inversely proportional to the wind speed or by fitting the data with a best-fit single power law. The critical cut-off wind speed (Ur,crit) for each size range of particles, distinguishing the boundary between these mixing regimes was also investigated. In the traffic-dependent PNC region (UrUrUr,critUr,crit), concentrations were inversely proportional to Ur irrespective of any particle size range and wind directions. The wind speed demarcating the two regimes (Ur,critUr,crit) was 1.23+/-0.55 m s(-1) for N10-300, (1.47+/-0.72 m s(-1)) for N10-30 but smaller (0.78+/-0.29 m s(-1)) for N30-300.  相似文献   

18.
Since the 1970's, many field and wind tunnel experiments have been conducted to study pollutant dispersion from roadways. For an at-grade situation, field experiments have revealed that mechanical mixing dominates effects due to ambient stability, that plume rise is important under very low crossroad winds, that regions of large shear enhance the mixing volume, and that the wake region grows rather slowly in the vertical direction. The models that have been developed based on recent experimental results are briefly described. For the street canyon situation, both field and wind tunnel experiments have revealed that ambient stability does not play an important role, that corner vortices near an intersection cause an increase in pollutant concentrations near the bottom corners of the leeside buildings, that in the midsection of a street block the vortex circulation causes high pollutant concentrations to be advected toward and up the leeside wall. No general street canyon models are available except an empirical model for the midsection of the street block. The complicated flow field must first be ascertained before a reliable concentration model can be developed.  相似文献   

19.
This paper describes the measurements and analysis of an experimental campaign performed in an urban street canyon in Athens, Greece. A number of field and indoor experimental procedures were organized during summer 2002 aiming at the investigation of the impact of urban environment on the potential of natural and hybrid ventilation. The present study is focused on the experimental investigation of thermal characteristics of a typical street canyon, oriented in ESE–WNW direction, under hot weather conditions. The temporal and spatial distribution of air and surface temperatures is examined. Emphasis was given on the vertical distribution of air and surface temperatures and the air temperature profile in the centre of canyon under different weather conditions. The measured surface temperature differences across the street reached almost 30 °C and this favored the overheating of lower air levels. Buoyancy generated mainly from asphalt-street heating resulted in the development of the predominant recirculation inside the street canyon.  相似文献   

20.
This paper presents the results of an urban measurement campaign performed in a street canyon in Athens, Greece. A number of field experimental procedures were organized during hot weather conditions, on a 24-h basis for five consecutive days during July 2002. Wind velocity measurements were conducted inside and outside the street canyon together with air and surface temperature measurements. Based on the results of air and surface temperature measurements, a further analysis is performed for the investigation of airflow inside the canyon when the ambient flow is parallel, perpendicular and oblique relative to the long canyon axis. The observed airflow characteristics are associated with the impact of thermal effects mainly induced from ground heating due to the incident solar radiation. However, the role of the finite length canyon effects related to wind circulation near street intersections, on the observed airflow patterns, is also identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号