共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of landfill leachate by the Fenton process 总被引:28,自引:0,他引:28
In recent years, studies of leachate treatment by conventional Fenton, photo-Fenton and electro-Fenton processes have indicated that these methods can effectively reduce concentrations of organic contaminants and color. In addition, the process can increase the biodegradable fraction of organic constituents in leachate, particularly in mature or biologically recalcitrant leachate. Oxidation and coagulation both play important roles in the removal of organics. Initial pH, dosages of Fenton reagents, aeration, final pH, reagent addition mode, temperature, and UV irradiation may influence final treatment efficiency. In this paper, current knowledge of performance and economics of Fenton processes for treatment of landfill leachate as reported for laboratory, pilot and full-scale studies is reviewed, with the conclusion that the Fenton process is an important and competitive technology for the treatment or pretreatment of landfill leachate. 相似文献
2.
Almudena Vilar Marta Eiroa Christian Kennes Maria C. Veiga 《Water and Environment Journal》2013,27(1):120-126
The Fenton process was used with the objective of improving the biodegradability of the leachate pretreated biologically up to a value compatible with a subsequent biological treatment. The optimum reaction and settlement pH was 3, both for the organic matter removal and for the improvement of the biodegradability. The chemical oxygen demand (COD) removal increased at increasing Fe2+ dosages, from 75.6% for 300 mg/L to 89.0% for 1400 mg/L. The most significant enhancement (84.8%) was obtained with 800 mg Fe2+/L. However, the biological oxygen demand/chemical oxygen demand ratio (BOD/COD) was almost the same at all the Fe2+ dosages, around 0.29. Moreover, varying the H2O2 concentration between 600 and 3600 mg/L, COD removal percentages were between 85.9 and 89.0%. However, the BOD/COD ratio increased at increasing H2O2 dosage up to 3000 mg/L, from 0.12 at 600 mg/L to 0.29 at 3000 mg/L. 相似文献
3.
Fatima Boumechhour Kerbachi Rabah Chikbouni Lamine Benmenni Med Said 《Water and Environment Journal》2013,27(1):114-119
Coagulation/flocculation process, Fenton oxidation and combinations between them were studied, aiming to provide an efficient method for the treatment of partially stabilized leachates. Leachates were collected from a municipal landfill site, samples containing around 3800 mg/L COD, BOD5/COD ratio about 0.11 and pH around 8. The sequence of stages implemented was: (a) coagulation/flocculation; (b) Fenton oxidation; (c) coagulation/flocculation followed by Fenton oxidation which resulted in a best COD removal (63.62%) and (d) Fenton oxidation followed by coagulation/flocculation. 相似文献
4.
Kinetics of aniline degradation by Fenton and electro-Fenton processes 总被引:11,自引:0,他引:11
Aniline degradation at pH 2 by Fenton and electro-Fenton processes was kinetically investigated in this study. Electro-Fenton process was found to be superior to ordinary Fenton process with the current impacts of 1.2 to 3.1 for removal efficiency and 1.2 to 5.8 for degradation rate depending on initial Fe2+ concentration. This is mainly due to the rapid electrochemical regeneration of Fe2+. Overall rate equations for aniline degradation by Fenton and electro-Fenton processes (in units of molar and minute) are: [EQUATION: SEE TEXT]. With current application, aniline degradation rate seems to be autonomous from Fenton's reagent concentrations and approaching a half order with respect to aniline. In addition, for complete removal of 0.01 M aniline, the delay in current supply at the initial stage could save up to one-third of the total energy required by the ordinary electro-Fenton process. As a result, significant reduction in energy consumption and operating cost could be obtained by the current-delay operating mode. 相似文献
5.
In this paper, the application of Fenton and Oxone/Co2+ oxidation processes for landfill leachate treatment was investigated. The removal of the chemical oxygen demand (COD), suspended substances (SS) and the color of the landfill leachate by Fenton oxidation to that by Oxone/Co2+ oxidation were compared under optimal operational conditions. For Fenton oxidation process, the optimal conditions were determined as: [H2O2] = 80 mmol L−1, [H2O2]/[Fe2+] = 2.0, initial pH = 2.5, reaction temperature = 37.5 ± 1 °C, reaction time = 160 min, number of stepwise addition = 3. Under the given conditions, 56.9% of the COD removal efficiency was achieved, but the SS and the color of the treated landfill leachate increased due to the generation of a large quantity of ferric hydroxide sludge. In reference to Oxone/Co2+ oxidation process, the optimal conditions were determined as: [Oxone] = 4.5 mmol L−1, [Oxone]/[Co2+] = 104, pH = 6.5, reaction temperature = 30 ± 1 °C, reaction time = 300 min, number of stepwise addition = 7, the COD, SS and the color removal efficiencies were 57.5, 53.3 and 83.3%, respectively. From this work, it can be concluded that Oxone/Co2+ oxidation process demonstrated higher degradation efficiencies of the COD, SS and color for landfill leachate treatment than that by Fenton oxidation process. It also suggested that Oxone/Co2+ oxidation process could be considered as one of the most promising technologies for practical applicability to treat landfill leachate in large scale. For further improving the efficiency of Oxone/Co2+ oxidation process, we proposed that combination of it with other technologies in future such as ultraviolet, ultrasound and biological methods. 相似文献
6.
Oxidation of explosives by Fenton and photo-Fenton processes 总被引:6,自引:0,他引:6
In this study, the Fenton process was used to explore the possibility of treating explosives, namely 2,4,6-trinitrophenol (PA), ammonium picronitrate (AP), 2,4-dinitrotoluene (DNT), methyl-2,4,6-trinitrophenylnitramine (Tetryl) and 2,4,6-Trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). The photo-Fenton process was also conducted to compare its oxidation efficiency with the Fenton process. The inhibition of hydroxyl radical and theory of crystal field stabilization energy were introduced in this study. Results show that oxidation efficiencies in Fenton system are in the following sequence: DNT > PA > AP > TNT > Tetryl > RDX > HMX. The degradation of the explosives obeys a pseudo-first-order behavior, and possible decomposing mechanisms are also discussed. For all explosives, the oxidation rates significantly increased with increasing the concentration of Fe(II), as well as illumination with UV light. 相似文献
7.
Tonni Agustiono Kurniawan 《Water research》2009,43(16):4079-4166
This study investigated the treatment performances of H2O2 oxidation alone and its combination with granular activated carbon (GAC) adsorption for raw leachate from the NENT landfill (Hong Kong) with a very low biodegradability ratio (BOD5/COD) of 0.08. The COD removal of refractory compounds (as indicated by COD values) by the integrated H2O2 and GAC treatment was evaluated, optimized and compared to that by H2O2 treatment alone with respect to dose, contact time, pH, and biodegradability ratio. At an initial COD concentration of 8000 mg/L and NH3-N of 2595 mg/L, the integrated treatment has substantially achieved a higher removal (COD: 82%; NH3-N: 59%) than the H2O2 oxidation alone (COD: 33%; NH3-N: 4.9%) and GAC adsorption alone (COD: 58%) at optimized experimental conditions (p ≤ 0.05; t-test). The addition of an Fe(II) dose at 1.8 g/L further improved the removal of refractory compounds by the integrated treatment from 82% to 89%. Although the integrated H2O2 oxidation and GAC adsorption could treat leachate of varying strengths, treated effluents were unable to meet the local COD limit of less than 200 mg/L and the NH3-N of lower than 5 mg/L. However, the integrated treatment significantly improved the biodegradability ratio of the treated leachate by 350% from 0.08 to 0.36, enabling the application of subsequent biological treatments for complementing the degradation of target compounds in the leachate prior to their discharge. 相似文献
8.
9.
10.
Landfill leachate was treated by a combined sequential batch reactor (SBR), coagulation, Fenton oxidation and biological aerated filter (BAF) technology. The metals in treatment process were fractionated into three fractions: particulate and colloidal (size charge filtration), free ion/labile (cation exchange) and non-labile fractions. Fifty percent to 66% Cu, Ni, Zn, Mn, Pb and Cd were present as particulate/colloidal matter in raw leachate, whereas Cr was present 94.9% as non-labile complexes. The free ion/labile fractions of Ni, Zn, Mg, Mn, Pb and Cd increased significantly after treatment except Cr. Fifty-nine percent to 100% of Al was present mainly as particulate/colloidal matter > 0.45 μm and the remaining portions were predicted as non-labile complexes except in coagulation effluent. The speciation of Fe varied significantly in various individual processes. Visual MINTEQ simulation showed that 95-100% colloidal species for Cu, Cd and Pb were present as metal-humic complexes even with the lower dissolved organic carbon. Optimum agreements for the free ion/labile species were within acidic solution, whereas under-estimated in alkaline effluents. Overestimated particulate/colloidal fraction consisted with the hypothesis that a portion of colloids in fraction < 0.45 μm were considered as dissolved. 相似文献
11.
Fenton法处理垃圾渗滤液 总被引:51,自引:5,他引:51
介绍了Fenton法处理垃圾渗滤液的中型试验,其中Fenton氧化在连续搅拌反应器(CSTR)中进行。试验表明,当双氧水与亚铁盐的总投加比一定(H2O2/Fe^2 =3.0)时,COD的去除率随双氧水投加量的增加而增加,但与双氧水在两个氧化槽的投加比例无关。当双氧水的总投加量为0.1mol/L时,COD的去除率可达67.5%,这一结果同样适用于其他垃圾填埋场的晚期渗滤液处理。 相似文献
12.
Treatment of landfill leachate by combined aged-refuse bioreactor and electro-oxidation 总被引:8,自引:0,他引:8
Two-stage aged-refuse bioreactor (ARB) was applied to treat landfill leachate in Shanghai Waste Laogang Disposal Plant. The removal efficiencies of chemical oxygen demand (COD), biological oxygen demand (BOD), total organic carbon (TOC), total nitrogen (TN) and ammonia nitrogen (NH(3)-N) of landfill leachate treated by the two-stage bioreactor system were 98.5%, 99.9%, 98.0%, 64.2% and 99.9%, respectively. The COD and BOD in the second stage effluent were 239 and 7 mg l(-1), respectively. Thus three types of electrolysis were employed to further treat the second effluent, undivided electrolysis (UDE), divided electrolysis (DE) with Ti/PbO(2) cathode and DE with gas diffusion cathode. All electrolysis processes possessed good color removal effect, while the DE with gas diffusion cathode had the best TOC removal effect. The optimum electrolysis time of leachate was 30 min. The TOC removal efficiencies were 51.4% and 39.7% in anolyte and catholyte, respectively, after 30 min electrolysis at 5 V. In addition, the DE with gas diffusion cathode showed the least energy consumption of 9.8 k Whm(-3) at 30 min. The organic pollutants in the leachate were analyzed through a gas chromatography coupled with mass spectrometry (GC-MS) system. Through the two-stage ARB, the species and concentrations of organic pollutants in landfill leachate reduced greatly. Several chlorinated organic compounds were detected in the effluent after the UDE and the anolyte of the DE. In addition, the concentration of absorbable organic halogens (AOX) increased greatly during the electrolysis. Hence, careful consideration should be given in the application of electro-oxidation into the treatment of chloride-containing wastewater. 相似文献
13.
This study is to establish optimal conditions for the minimization of iron sludge produced in Fenton oxidation processes by electro-regenerating Fe(2+) with constant potential (CPM) or constant current mode (CCM). Results indicate that the optimal cathodic potential for Fe(2+) regeneration is -0.1 V vs. the saturated calomel electrode (SCE) in terms of current efficiency. Keeping the initial Fe(3+) concentration ([Fe(3+)](0)) constant, the average current density produced at -0.1 V vs. SCE (CPM) is approximately equal to the optimal current density applied in the CCM. The suitable pH range is below the pH value determined by Fe(3+) hydrolysis. As expected, increasing cathode surface area and solution temperature notably increases Fe(2+) regeneration rate. At the optimal potential, the average current density increases linearly with [Fe(3+)](0), exhibiting a slope of 8.48 x 10(-3)(A/m(2))(mg/L)(-1). The average current efficiency varies with [Fe(3+)](0), e.g., 75% and 96-98% at 100 and > or = 500 mg/L [Fe(3+)](0), respectively. Once reaching 75% of Fe(2+) regeneration capacity, further regeneration becomes difficult due to Fe(3+) mass transfer limitation. Fe(2+) can also be effectively regenerated by dissolving iron sludge at low pH (usually =1). The unit energy consumption is 2.0-3.0 k Wh per kg Fe(2+) regenerated. 相似文献
14.
Pin-Jing He Zhong Zheng Hua Zhang Li-Ming Shao Qiong-Yao Tang 《The Science of the total environment》2009,407(17):4928-4933
An increasing attention has been paid to the trace endocrine disrupting compounds (EDCs) in landfill leachate. In this paper, the removal of EDCs including phthalic acid esters (PAEs) and bisphenol A (BPA) from the fresh and mature landfill leachate by Fenton treatment was studied. More than 40% of PAEs and about 62% of BPA were removed from the raw mature leachate while only 20% of PAEs and 37% of BPA in the raw fresh leachate were reduced, respectively. After the fresh and mature leachates were spiked with PAEs to 1.5 mg L− 1 and BPA to 0.08 mg L− 1, the removal efficiencies of BPA and PAEs increased to more than 88%. The results indicated that the removing efficiencies of the EDCs in the leachate had a relationship with their concentrations, and that the trace levels of EDCs in leachate challenged the treatment capacity of the Fenton process. Most of the EDCs in the enriched leachate were removed by oxidation, which had no clear correlation with the hydrophobicity of the EDCs. The flocculation played an important role in the removal of di-(2-ethylhexyl) phthalate that could not be completely oxidized in the Fenton process, in that the EDCs with high n-octanol/water partition coefficient inclined to precipitate after the Fenton process. The dissolved organic matter (DOM) in the fresh leachate inhibited the EDCs removal more than the DOM in the mature leachate did. Both the composition of the leachate DOM and the characteristics of the EDCs determined the removing efficiencies of the EDCs in the Fenton process. 相似文献
15.
Vanseng Chounlamany Maria Antonia Tanchuling Takanobu Inoue 《The International journal of environmental studies》2019,76(3):379-395
The Marikina River in the Philippines has been polluted by Payatas landfill leachate, and domestic and agricultural waste. This study monitored the water quality at five stations on the river and two stations on two creeks that discharge to the river to determine the effects of Payatas landfill and to estimate pollution loading. The dissolved oxygen (DO), chemical oxygen demand (COD) and other water quality parameters were compared with the Philippines Standards for river water classification. It was found that Payatas leachate has a significant influence on the DO and COD levels as well as other water quality parameters. Per capita pollution loading for Quezon City was found to be lower than for Europe and Japan. The effect of leachate is more significant during the dry season. It is recommended that a leachate collection system be established to prevent leachate form entering Payatas creek, and that the Patayas landfill be replaced with a modern landfill site, conforming to current best practice at another location.
List of Abbreviation: BOD= Biological Oxygen Demand COD = Chemical Oxygen Demand DO = Dissolved Oxygen EC = Electrical Conductivity M1, M2, M3, M4, M5 = monitoring stations TDS = Total Dissolved Solids TSS = Total Suspended Solids 相似文献
16.
垃圾渗滤液处理工艺现状浅析 总被引:2,自引:0,他引:2
分析了垃圾渗滤液的水质特点,归纳了目前采用较多的渗滤液处理技术,并对国内一些工程实例进行了比较,探讨了存在的问题,并提出可能的解决途径. 相似文献
17.
微波强化Fenton氧化处理垃圾渗滤液的研究 总被引:4,自引:0,他引:4
以负载铁(Ⅱ)的颗粒活性炭(GAC)为催化剂,采用微波强化Fenton氧化处理老龄垃圾渗滤液,考察了对垃圾渗滤液的处理效果及微波的作用机理。结果表明,微波对Fenton氧化反应有催化作用,且可促进渗滤液中胶体的絮凝,微波作用时间是影响处理效果的主要因素;当GAC的铁负载量为33.32mg/g、微波功率为720W、微波时间为30min时,对COD和NH3-N的去除率最高,分别达到了95.64%和88.63%;COD主要通过催化氧化作用被去除,而NH3-N主要通过絮凝、吸附作用被去除;另外,微波可使GAC再生,提高了GAC的利用率。 相似文献
18.
Iron crystallization in a fluidized-bed Fenton process 总被引:2,自引:0,他引:2
The mechanisms of iron precipitation and crystallization in a fluidized-bed reactor were investigated. Within the typical Fenton’s reagent dosage and pH range, ferric ions as a product from ferrous ion oxidation would be supersaturated and would subsequently precipitate out in the form of ferric hydroxide after the initiation of the Fenton reaction. These precipitates would simultaneously crystallize onto solid particles in a fluidized-bed Fenton reactor if the precipitation proceeded toward heterogeneous nucleation. The heterogeneous crystallization rate was controlled by the fluidized material type and the aging/ripening period of the crystallites. Iron crystallization onto the construction sand was faster than onto SiO2, although the iron removal efficiencies at 180 min, which was principally controlled by iron hydroxide solubility, were comparable. To achieve a high iron removal rate, fluidized materials have to be present at the beginning of the Fenton reaction. Organic intermediates that can form ferro-complexes, particularly volatile fatty acids, can significantly increase ferric ion solubility, hence reducing the crystallization performance. Therefore, the fluidized-bed Fenton process will achieve exceptional performance with respect to both organic pollutant removal and iron removal if it is operated with the goal of complete mineralization. Crystallized iron on the fluidized media could slightly retard the successive crystallization rate; thus, it is necessary to continuously replace a portion of the iron-coated bed with fresh media to maintain iron removal performance. The iron-coated construction sand also had a catalytic property, though was less than those of commercial goethite. 相似文献
19.
Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland 总被引:1,自引:0,他引:1
Nivala J Hoos MB Cross C Wallace S Parkin G 《The Science of the total environment》2007,380(1-3):19-27
A pilot-scale subsurface-flow constructed wetland was installed at the Jones County Municipal Landfill, near Anamosa, Iowa, in August 1999 to demonstrate the use of constructed wetlands as a viable low-cost treatment option for leachate generated at small landfills. The system was equipped with a patented wetland aeration process to aid in removal of organic matter and ammonia nitrogen. The high iron content of the leachate caused the aeration system to cease 2 years into operation. Upon the installation of a pretreatment chamber for iron removal and a new aeration system, treatment efficiencies dramatically improved. Seasonal performance with and without aeration is reported for 5-day biochemical oxygen demand (BOD(5)), chemical oxygen demand (COD), ammonia nitrogen (NH(4)-N), and nitrate nitrogen (NO(3)-N). Since winter air temperatures in Iowa can be very cold, a layer of mulch insulation was installed on top of the wetland bed to keep the system from freezing. When the insulation layer was properly maintained (either through sufficient litterfall or replenishing the mulch layer), the wetland sustained air temperatures of as low as -26 degrees C without freezing problems. 相似文献
20.
Varank G Demir A Top S Sekman E Akkaya E Yetilmezsoy K Bilgili MS 《The Science of the total environment》2011,409(17):3183-3196
Four identical pilot-scale landfill reactors with different alternative composite liners were simultaneously operated for a period of about 540 days to investigate and to simulate the migration behaviors of phenolic compounds (phenol, 2-CP, 2-MP, 3-MP, 4-MP, 2-NP, 4-NP, 2,4-DNP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,6-TeCP, PCP) and heavy metals (Pb, Cu, Zn, Cr, Cd, Ni) from landfill leachate to the groundwater. Alternative landfill liners of four reactors consist of R1: Compacted clay liner (10 cm + 10 cm, k = 10−8 m/sn), R2: Geomembrane (2 mm HDPE) + compacted clay liner (10 cm + 10 cm, k = 10−8 m/sn), R3: Geomembrane (2 mm HDPE) + compacted clay liner (10 cm, k = 10−8 m/sn) + bentonite liner (2 cm) + compacted clay liner (10 cm, k = 10−8 m/sn), and R4: Geomembrane (2 mm HDPE) + compacted clay liner (10 cm, k = 10−8 m/sn) + zeolite liner (2 cm) + compacted clay liner (10 cm, k = 10−8 m/sn). Wastes representing Istanbul municipal solid wastes were disposed in the reactors. To represent bioreactor landfills, reactors were operated by leachate recirculation. To monitor and control anaerobic degradation in the reactors, variations of conventional parameters (pH, alkalinity, chloride, conductivity, COD, TOC, TKN, ammonia and alcaly metals) were also investigated in landfill leachate samples. The results of this study showed that about 35-50% of migration of organic contaminants (phenolic compounds) and 55-100% of migration of inorganic contaminants (heavy metals) to the model groundwater could be effectively reduced with the use of bentonite and zeolite materials in landfill liner systems. Although leachate contaminants can reach to the groundwater in trace concentrations, findings of this study concluded that the release of these compounds from landfill leachate to the groundwater may potentially be of an important environmental concern based on the experimental findings. 相似文献