首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 438 毫秒
1.
A mercury-cell chlor-alkali plant operated in Estarreja (North-western Portugal) for 50 years causing widespread environmental contamination. Although production by this process ceased in 2002, mercury contamination from the plant remains significant. The main objective of this study was to investigate mercury impact on the nearby environment and potential risks to local population. To assess the level of contamination soil samples were collected from agricultural fields in the vicinity of the plant, extending the study by taking samples of the predominant vegetation suitable for animal and human consumption, water samples, and fish species from a nearby coastal lagoon, to gain a preliminary insight into the potential for contamination of the terrestrial and aquatic food web. To determine population exposure to mercury, hair samples were collected from local residents. Total mercury concentration in the 0-15 cm layer of soil was found to be highly variable, ranging between 0.010 and 91 mg kg− 1, although mercury contamination of soils was found to be restricted to a confined area. Lolium perenne roots contained between 0.0070 and 2.0 mg kg− 1, and there is evidence that root systems uptake mercury from the soil. Levels of mercury in the aerial parts of plants ranged between 0.018 and 0.98 mg kg− 1. It appears that plants with higher mercury concentration in soils and roots also display higher mercury concentration in leaves.Total mercury concentration in water samples ranged between 12 and 846 ng L− 1, all samples presenting concentrations below the maximum level allowable for drinking water defined in the Portuguese law (1.0 μg L− 1).Mercury levels in fish samples were below the maximum limit defined in the Portuguese law (0.5 mg kg− 1), ranging from 0.0040 to 0.24 mg kg− 1. Vegetables collected presented maximum mercury concentration of 0.17 mg kg− 1. In general, food is not contaminated and should not be responsible for major human exposure to the metal.Mercury determined in human hair samples (0.090-4.2 mg kg− 1; mean 1.5 mg kg− 1) can be considered within normal limits, according to WHO guidelines suggesting that it is not affecting the local population. Despite being subject to decades of mercury emissions, nowadays this pollutant is only found in limited small areas and must not constitute a risk for human health, should these areas be restricted and monitored.Considering the present data, it appears that the population from Estarreja is currently not being affected by mercury levels that still remain in the environment.  相似文献   

2.
The plants grown in seleniferous soils constitute a major source of toxic selenium levels in the food chain of animals and human beings. Greenhouse and field experiments were conducted to study selenium concentrations of weeds, forages and cereals grown on seleniferous soils located between 31.0417° to 31.2175° N and 76.1363° to 76.4147° E in northwestern India. Eleven winter season (November-April) weed plants were grown in the greenhouse in a soil treated with different levels of selenate-Se. Selenium concentrations of weed plants increased progressively with the levels of selenate-Se in soil. The highest Se concentration was recorded by Silene gallica (246 mg kg− 1) and the lowest by Avena ludoviciana (47 mg kg− 1) at 2.5 mg Se kg− 1 soil. A.ludoviciana and Spergula arvensis proved highly tolerant to the presence of 1.25 and 2.5 mg selenate-Se kg− 1 soil and the remaining weeds were sensitive to Se. Dry matter yield of Se-sensitive weed plants was 25 to 62% of the yield in the no-Se control at 1.25 mg selenate-Se kg− 1 and 6 to 40% at 2.5 mg selenate-Se kg− 1 soil. Other symptoms like change in leaf colour and size, burning of leaf tips and margins, and delayed flowering were also observed due to Se. Dry matter yield of Se-sensitive weed plants expressed as percentage of yield in the no-Se control at both the Se levels was inversely correlated with their Se content (r = − 0.731, p < 0.01, N = 17). Among the weed plants grown in seleniferous soils under field situations, Mentha longifolia accumulated the highest Se (365 mg kg− 1) and Phalaris minor the lowest (34 mg kg− 1). Among agricultural crops grown on a naturally contaminated soil in the greenhouse, Se concentrations were the highest for oilseed crops (19-29 mg kg− 1), followed by legumes (6-13 mg kg− 1) and cereals (2-18 mg kg− 1). Helianthus annuus among the oilseed crops, A.ludoviciana among the winter season weeds, M.longifolia among the summer season (May-October) weeds and Cirsium arvense among the perennial weeds can be used for phytoremediation of seleniferous soils as these accumulate the highest amounts of Se.  相似文献   

3.
The soils affected by the spill of a pyrite mine were analysed in 100 sampling points at three depths (0-10, 10-30, and 30-50 cm) in 1998 (after the tailings were removed), 1999 (after the cleaning of the highly contaminated areas), and 2004 (after the tilling of the upper 20-25 cm). The comparative study reveals that the removal of the tailings left a heterogeneous distribution pattern of the contaminants, with highly polluted spots alternating with less contaminated areas. The cleanup did not substantially lower the concentration in the highly polluted soils, and the spread of the pollutants increased the concentration in As and Pb in the uppermost 10 cm of 60% of the soils, while the Zn and Cd concentrations increased in only 30% of the soils. Given the high concentration of pollutants in the topsoil (especially As), the tilling of the upper 20-25 cm, despite reducing the average concentration of pollutants in the uppermost 10 cm, did not substantially lower the percentage of soils that exceeded the concentration of 40 mg As kg− 1 dry soil and almost doubled the percentage of soils that surpassed this concentration between 10 and 30 cm. Meanwhile, the displacement of Zn and Cd within the soil supported the reduction in the percentage of soils that in the upper 10 cm exceeded the reference concentrations of these elements (900 mg Zn kg− 1 dry soil and 2 mg Cd kg− 1 dry soil), and the percentage of soils exceeding these concentrations between 10 and 50 cm in depth did not increase. Six years after the spill and at the end of all remediation measures, the intervention levels defined by the Environmental Agency of the Regional Government of Andalusia for natural parks were exceeded in the uppermost 10 cm in 35% of the soils.  相似文献   

4.
Due to unregulated uses of lead pellets for hunting purposes in Japan, soils and sediments in some river basins and wetlands have become highly contaminated with Pb. Deterioration of natural vegetation has occurred sporadically in these areas, and therefore revegetation is needed for ecological restoration. The objectives of the present study were to assess the effects of surface applications of compost and gypsum amendments on Pb availability to a watercress plant (Nasturtium officinale W.T. Aiton) and molecular-scale speciation of Pb in soil solid phases. The compost and gypsum amendments significantly decreased dissolved Pb and Sb in pore water. The concentration of Pb in aboveground plant tissues was 190 mg kg− 1 in the control soil and was reduced to < 20 mg kg− 1 in the compost and gypsum-amended soils. The concentration of Sb in plants grown in the control soil was 13 mg kg− 1, whereas that in the soils receiving compost and gypsum decreased below detectable levels. Redox potential was higher in vegetated soils (ave. 349 mV) than in the unvegetated soils (ave. 99 mV) due to oxygen introduced by plant roots. Extended X-ray absorption fine structure (EXAFS) spectroscopy illustrated that Pb occurred as Pb sorbed on birnessite and/or ferrihydrite (Pb-Mn/Fe, ~ 60%) and Pb sorbed on organic matter (Pb-org, ~ 15%), and galena (PbS, ~ 10%) in the vegetated and unvegetated control soils. The compost amendment increased the proportion of Pb-org by 2-fold than in the control soils. The amended soils with plant growth decreased the proportion of Pb-Mn/Fe phases by half of that without plant growth. Galena and anglesite (PbSO4) were not detected in compost-amended soils and even in gypsum-amended soils since a significant soil reduction to anoxic levels did not occur in the entire soil. The present study indicated that, under flooded conditions, surface applications of compost and gypsum amendments reduced plant Pb uptake from the Pb contaminated soil.  相似文献   

5.
Heavy metal contamination of soils resulting from mining and smelting is causing major concern due to the potential risk involved. This study was designed to investigate the heavy metal (Cu, Zn, Pb and Cd) concentrations in soils and food crops and estimate the potential health risks of metals to humans via consumption of polluted food crops grown at four villages around the Dabaoshan mine, South China. The heavy metal concentrations in paddy and garden soils exceeded the maximum allowable concentrations for Chinese agricultural soil. The paddy soil at Fandong village was heavily contaminated with Cu (703 mg kg− 1), Zn (1100 mg kg− 1), Pb (386 mg kg− 1) and Cd (5.5 mg kg− 1). Rice tended to accumulated higher Cd and Pb concentration in grain parts. The concentrations of Cd, Pb and Zn in vegetables exceeded the maximum permissible concentration in China. Taro grown at the four sampled villages accumulated high concentrations of Zn, Pb and Cd. Bio-accumulation factors for heavy metals in different vegetables showed a trend in the order: Cd > Zn > Cu > Pb. Bio-accumulation factors of heavy metals were significantly higher for leafy than for non-leafy vegetable. The target hazard quotient (THQ) of rice at four sites varied from 0.66-0.89 for Cu, 0.48-0.60 for Zn, 1.43-1.99 for Pb, and 2.61-6.25 for Cd. Estimated daily intake (EDI) and THQs for Cd and Pb of rice and vegetables exceeded the FAO/WHO permissible limit. Heavy metal contamination of food crops grown around the mine posed a great health risk to the local population through consumption of rice and vegetables.  相似文献   

6.
The presence of energetic materials (used as explosives and propellants) at contaminated sites is a growing international issue, particularly with respect to military base closures and demilitarization policies. Improved understanding of the ecotoxicological effects of these materials is needed in order to accurately assess the potential exposure risks and impacts on the environment and its ecosystems. We studied the toxicity of the nitroaromatic energetic material 2,4-dinitrotoluene (2,4-DNT) on alfalfa (Medicago sativa L.), barnyard grass (Echinochloa crusgalli L. Beauv.), and perennial ryegrass (Lolium perenne L.) using four natural soils varying in properties (organic matter, clay content, and pH) that were hypothesized to affect chemical bioavailability and toxicity. Amended soils were subjected to natural light conditions, and wetting and drying cycles in a greenhouse for 13 weeks prior to toxicity testing to approximate field exposure conditions in terms of bioavailability, transformation, and degradation of 2,4-DNT. Definitive toxicity tests were performed according to standard protocols. The median effective concentration (EC50) values for shoot dry mass ranged from 8 to 229 mg kg− 1, depending on the plant species and soil type. Data indicated that 2,4-DNT was most toxic in the Sassafras (SSL) and Teller (TSL) sandy loam soils, with EC50 values for shoot dry mass ranging between 8 to 44 mg kg− 1, and least toxic in the Webster clay loam soil, with EC50 values for shoot dry mass ranging between 40 to 229 mg kg− 1. The toxicity of 2,4-DNT for each of the plant species was significantly (p ≤ 0.05) and inversely correlated with the soil organic matter content. Toxicity benchmark values determined in the present studies for 2,4-DNT weathered-and-aged in SSL or TSL soils will contribute to development of an Ecological Soil Screening Level for terrestrial plants that can be used for ecological risk assessment at contaminated sites.  相似文献   

7.
Polychlorinated biphenyls (PCB) are persistent pollutants in soil environments where they continue to present considerable human health risks. Successful strategies to remediate contaminated soils are needed that are effective and of low cost. Bioremediation approaches that include the use of plants and microbial communities to promote degradation of PCB have significant potential but need further assessment under field conditions. The effects of growth of alfalfa (Medicago sativa L.) and inoculation with a symbiotic nitrogen fixing bacterium (Rhizobium meliloti) on the removal of polychlorinated biphenyls (PCB) from rhizosphere soil were evaluated in a field experiment. The initial PCB content of the soil ranged from 414 to 498 µg kg1. PCB removal for the rhizosphere soil was enhanced in the planted treatments, an average of 36% decrease in PCB levels compared to a 5.4% decrease in the unplanted soil, and further enhanced when plants were inoculated with the symbiotic Rhizobium (an average of 43% decrease) when evaluated at 90 days after planting. Plant biomass production was higher in the inoculated treatment. The total PCB content was increased from 3.30 µg kg1 to 26.72 µg kg1 in plant shoots, and from 115.07 µg kg1 to 142.23 µg kg1 in roots in the inoculated treatment compared to the planted treatment. Increased colony forming units (cfu) of total heterotrophic bacteria, biphenyl-degrading bacteria and fungi were observed in the rhizosphere of inoculated plants. PCB removal from the rhizosphere soil was not significantly correlated with the direct PCB uptake by the plants in any of the treatments but was significantly correlated with the stimulation of rhizosphere microflora. Changes in the soil microbial community structure in the planted and inoculated treatment were observed by profiling of bacterial ribosomal sequences. Some bacteria, such as Flavobacterium sp., may have contributed to the effective degradation of PCB and deserve further investigation.  相似文献   

8.
Better understanding of the processes controlling arsenic bioavailability in the rhizosphere is important to enhance plant arsenic accumulation by hyperaccumulators. This greenhouse experiment was conducted to evaluate the chemical characteristics of the rhizosphere of two arsenic hyperaccumulators Pterisvittata and Pterisbiaurita. They were grown for 8 weeks in rhizopots containing arsenic-contaminated soils (153 and 266 mg kg− 1 arsenic). Bulk and rhizosphere soil samples were analyzed for water-soluble As (WS-As) and P (WS-P), pH, and dissolved organic carbon (DOC). Comparing the two plants, P.vittata was more tolerant to arsenic and more efficient in arsenic accumulation than P.biaurita, with the highest frond arsenic being 3222 and 2397 mg kg− 1. Arsenic-induced root exudates reduced soil pH (by 0.74-0.92 units) and increased DOC concentrations (2-3 times) in the rhizosphere, resulting in higher WS-P (2.6-3.8 times higher) compared to the bulk soil. Where there was no difference in WS-As between the rhizosphere and bulk soil in soil-153 for both plants, WS-As in the rhizosphere was 20-40% higher than those in bulk soil in soil-266, indicating that the rate of As-solubilization was more rapid than that of plant uptake. The ability to solubilize arsenic via root exudation in the rhizosphere and the ability to accumulate more P under arsenic stress may have contributed to the efficiency of hyperaccumulator plants in arsenic accumulation.  相似文献   

9.
Soil of former shrimp aquaculture facilities in Thailand may be contaminated by antibiotics (e.g. oxytetracycline and norfloxacin) and have elevated salinity. Therefore, reuse of this land can be problematic. The utility of soybean (Glycine max (L.) Merr.) for phytoremediation was investigated. The rate of germination and seedling emergence in prepared contaminated soil (conductivity 17.7 dS m− 1 from adding 70 mg sodium chloride g− 1 dry weight, 105 mg kg− 1 dry weight oxytetracycline and 55 mg kg− 1 dry weight norfloxacin) in sunlight was approximately 80% that of uncontaminated soil. This reduction was largely due to the high salinity. The antibiotics of interest degraded relatively rapidly in soil (half-life < 10 h for both) but loss was slower in deionised water. Accumulation of the antibiotics from deionised water by soybean resulted in little effect on growth rate and maximum levels in plants were observed after two days exposure, followed by declining concentrations. For soybean plants grown in saline soil, 90% removal of NaCl from soil adjacent to plant roots was observed, most within two days. Wilting and defoliation occurred, but plants recovered after 10 days and maximum salt levels in plants exceeded 20,000 mg g− 1 dry weight with translocation from root to shoot tissue noted. Soybean plants also accumulated the antibiotics from prepared contaminated saline soil, but translocation from the roots was not observed. The results showed that soybean can be valuable for phytoremediation in these situations.  相似文献   

10.
Estimating dermal absorption from contaminated soils typically requires extrapolations from measurements obtained on soils artificially contaminated at much larger concentrations. Such extrapolations should be constrained by the fact that maximum absorption will occur for the largest possible concentration of chemical on the soil without neat chemical being present; i.e., at the soil saturation limit (Ssoil). Saturation limits of two low-volatility model compounds (4-cyanophenol and methyl paraben) were determined on the 38-63 μm sieve fraction of four soils with different fractions of organic carbon (foc = 0.015-0.45) and specific surface areas (σsoil = 4-34 m2 g− 1) using two methods: equilibrium uptake into silicone rubber membranes and differential scanning calorimetry. Except for Pahokee peat, which had the largest foc, a model assuming contributions from both surface adsorption and organic carbon absorption provided excellent predictions of Ssoil. In all soils, the surface saturation concentration of both chemicals was estimated at 2.2 mg m− 2. The saturation concentration of 4-cyanophenol in the soil organic carbon was 1.7-fold higher than methyl paraben, which is consistent with the estimated solubility limits of these two chemicals in octanol.  相似文献   

11.
This study investigated the interaction of three polycyclic aromatic hydrocarbons (PAHs), i.e., naphthalene (NAP), phenanthrene (PHN), and pyrene (PYR), with the microbial community in the rhizosphere of a paddy soil and the influence of the rice (Oryza sativa) rhizosphere on the microbial community structure. A range of initial NAP, PHN and PYR levels in soil (50-200, 18-72, and 6.6-26.6 mg kg− 1, respectively) were prepared and the soil samples were then aged for 4 months (to yield PAH concentrations at 1.02-1.42, 1.32-4.77, and 2.98-18.5 mg kg− 1, respectively) before the soil samples were planted with rice seedlings. The microbial phospholipid-fatty-acid (PLFA) patterns in PAH-contaminated soils were analyzed to elucidate the changes of the microbial biomass and community composition. Results indicated that at the applied concentrations the PAHs were not toxic to rice seedlings, as evidenced by no growth inhibition during the 8-week planting period. However, the microbial biomass, as revealed by PLFAs, decreased significantly with increasing PAH concentration in both rhizospheric and non-rhizospheric soils. The PAHs in soils were obviously toxic to microorganisms, and the toxicity of PHN was greater than PYR due likely to the higher PHN bioavailability. Total PLFAs in rhizospheric soils were profoundly higher than those in non-rhizospheric soils, suggesting that the inhibitive effect of PAHs on microbial activities was alleviated by the rice roots. The principal component analysis (PCA) of the PLFA signatures revealed pronounced changes in PLFA pattern in rhizospheric and non-rhizospheric soils with or without spiked PAHs. Using the PLFA patterns as a biomarker, it was found that Gram-positive bacteria were more sensitive to PAHs than Gram-negative bacteria, and the rhizosphere of rice roots stimulated the growth of aerobic bacteria.  相似文献   

12.
The definition of ambient background concentrations (ABCs) is used in this study to assess the potential environmental risk of trace elements in soils and parent materials from Granada, Spain. Two different layers of soil (0-20 and 20-40 cm) and parent material samples were collected at 93 sites. From cumulative frequency distribution curves, ABCs for As, Co, Cu, Cr, Ni, Pb and Zn were estimated at 3.5-20, 7-23, 13-25.6, 29-66, 7-20, 15-36, and 5.5-76 mg kg− 1, respectively. Tukey box-plots were used to discriminate different concentration classes and identify potentially contaminated sites. Weakly-weathered soils (Entisols) over carbonate materials showed the lowest background contents, the most developed soils (Alfisols) over metamorphic rocks the highest ones. Outliers were mainly found near a former iron mine where arsenic concentrations were by far exceeding the corresponding regional ABC. These soils were however, not toxic to Escherichia coli and Vibrio fischeri. The prediction of site-specific ABCs together with bioavailability and toxicity assessment is a valuable tool for giving further insight into the risk of trace elements in soils.  相似文献   

13.
Present work is carried out adjacent to world's highest rainfall area Kylleng Pyndengsohiong (KP) Mawthabah (Domiasiat), Meghalaya in India to establish the baseline value of manganese intake through dietary route by the local tribe population in view of proposed uranium mining. The locally available food items collected from villages surrounding the proposed uranium mining site at KP Mawthabah (Domiasiat) were analysed using Energy Dispersive X-Ray Fluorescence (EDXRF) Technique. The manganese concentration in different food categories varies from 2.76-12.50 mg kg− 1 in cereals, 1.8-4.20 mg kg− 1 in leafy vegetables, 0.30-13.50 mg kg− 1 in non leafy vegetables, 0.50-15.30 mg kg− 1 in roots and tubers, 0.70-1.50 mg kg− 1 in fruits and 0.12-0.96 mg kg− 1 in flesh food. The mean dietary intake of Mn was found to be 3.83 ± 0.25 mg d− 1 compared to Recommended Dietary Allowances (RDAs) of 2-5 mg d− 1. The daily intake of Manganese by the local tribe population is comparable with the value (3.7 mg d− 1) recommended by International Commission on Radiological Protection (ICRP) for reference man and lower than the intake value observed for Indian and other Asian population.  相似文献   

14.
The Unified Bioaccessibility Method (UBM), which simulates the fluids of the human gastrointestinal tract, was used to assess the oral bioaccessibility of Cr in 27 Glasgow soils. These included several contaminated with Cr(VI), the most toxic form of Cr, from the past disposal of chromite ore processing residue (COPR). The extraction was employed in conjunction with the subsequent determination of the bioaccessible Cr by ICP-OES and Cr(VI) by the diphenylcarbazide complexation colorimetric procedure. In addition, Cr(III)-containing species were determined by (i) HPLC-ICP-MS and (ii) ICP-OES analysis of gel electrophoretically separated components of colloidal and dissolved fractions from centrifugal ultrafiltration of extracts. Similar analytical procedures were applied to the determination of Cr and its species in extracts of the < 10 μm fraction of soils subjected to a simulated lung fluid test to assess the inhalation bioaccessibility of Cr.The oral bioaccessibility of Cr was typically greater by a factor of 1.5 in the ‘stomach’ (pH ~ 1.2) compared with the ‘stomach + intestine’ (pH ~ 6.3) simulation. On average, excluding two COPR-contaminated soil samples, the oral bioaccessibility (‘stomach’) was 5% of total soil Cr and, overall, similar to the soil Cr(VI) concentration. Chromium(VI) was not detected in the extracts, a consequence of pH- and soil organic matter-mediated reduction in the ‘stomach’ to Cr(III)-containing species, identified as predominantly Cr(III)-humic complexes. Insertion of oral bioaccessible fraction data into the SNIFFER human health risk assessment model identified site-specific assessment criteria (for residential land without plant uptake) that were exceeded by the soil total Cr (3680 mg kg-1) and Cr(VI) (1485 mg kg-1) concentration at only the most COPR-Cr(VI)-contaminated location. However, the presence of measurable Cr(VI) in the < 10 μm fraction of the two most highly Cr(VI)-contaminated soils demonstrated that inhalation of Cr(VI)-containing dust remains the most potentially harmful exposure route.  相似文献   

15.
The aims of this study were to determine the factors which control metal and As phytoavailability in the different microenvironments (Sand Dunes, Salt Flat, Dry River and Shrubs) present at a Mediterranean salt marsh polluted by mining wastes. We performed a field study following a plot sampling survey. The analyses of soil parameters (pH, electrical conductivity (EC), organic carbon contents, etc.), total metal and As concentrations and their phytoavailability assessed with EDTA were related to each microenvironment and the corresponding plant species uptake. The averages of pH and EC were slightly alkaline (pH ≈ 7.5) and saline (≈ 2.2 to 17.1 dS m−1) respectively. The soil samples from the Salt Flat subzone showed the highest metal concentrations (e.g. 51 mg kg−1 Cd, 11,600 mg kg−1 Pb) while for As, the highest concentrations occurred in the Dry River (380 mg kg−1 As). The total metal and EDTA-extractable concentrations occurred as it follows: Salt Flat > Dry River > Degraded Dunes > Shrubs. In relation to plant metal and As accumulation, the highest root concentrations were obtained in the species from the Salt Flat subzone: ~ 17 mg kg−1 As, ~ 620 mg kg−1 Pb, for both, Juncus maritimus and Arthrocnemum macrostachyum. However the highest metal and As shoot concentrations occurred in species from the Sand Dunes: ~ 23 mg kg−1 As ~ 270 mg kg−1 Pb for Dittrichia viscosa; ~ 23 mg kg−1 As, ~ 390 mg kg−1 Zn for Crucianella maritima. The occurrence of edaphic gradients including salinity and texture determined the vegetation distribution. However, it cannot be concluded that there was a disturbance due to metal(loid)s soil concentrations in terms of vegetation composition except in the Degraded Dunes and Dry River. The higher EDTA-extractable concentrations were coincidental with the most saline soils but this did not result in higher metal(loid)s plant accumulation.  相似文献   

16.
Soil contamination due to petroleum-derived products is an important environmental problem. We assessed the impacts of diesel oil on plants (Trifolium repens and Lolium perenne) and soil microbial community characteristics within the context of the rhizoremediation of contaminated soils. For this purpose, a diesel fuel spill on a grassland soil was simulated under pot conditions at a dose of 12,000 mg diesel kg− 1 DW soil. Thirty days after diesel addition, T. repens (white clover) and L. perenne (perennial ryegrass) were sown in the pots and grown under greenhouse conditions (temperature 25/18 °C day/night, relative humidity 60/80% day/night and a photosynthetic photon flux density of 400 μmol photon m− 2 s− 1) for 5 months. A parallel set of unplanted pots was also included. Concentrations of n-alkanes in soil were determined as an indicator of diesel degradation. Seedling germination, plant growth, maximal photochemical efficiency of photosystem II (Fv/Fm), pigment composition and lipophylic antioxidant content were determined to assess the impacts of diesel on the studied plants. Soil microbial community characteristics, such as enzyme and community-level physiological profiles, were also determined and used to calculate the soil quality index (SQI). The presence of plants had a stimulatory effect on soil microbial activity. L. perenne was far more tolerant to diesel contamination than T. repens. Diesel contamination affected soil microbial characteristics, although its impact was less pronounced in the rhizosphere of L. perenne. Rhizoremediation with T. repens and L. perenne resulted in a similar reduction of total n-alkanes concentration. However, values of the soil microbial parameters and the SQI showed that the more tolerant species (L. perenne) was able to better maintain its rhizosphere characteristics when growing in diesel-contaminated soil, suggesting a better soil health. We concluded that plant tolerance is of crucial importance for the recovery of soil health during rhizoremediation of contaminated soils.  相似文献   

17.
Chromium is a heavy metal of commercial importance, thus significant amounts are released in wastewaters. Chromium in wastewaters and in the aquatic environment is primarily encountered in oxidation stages +3 (Cr(III)) and +6 (Cr(VI)). Recent publications suggest that Cr(VI) compounds are more toxic than Cr(III) ones, while Cr(III) has been identified as trace element, at least for complex organisms. With respect to chromium species mobility, Cr(VI) can cross cellular membranes, which then may be oxidized to Cr(III) and react with intracellular biomolecules. Clear conclusions cannot be derived about the critical chromium concentrations that affect activated sludge growth, as the latter is a function of a number of factors. Broadly, may be supported that activated sludge growth is stimulated at Cr(III) concentrations up to 15 mg L−1, above which is inhibited, with lethal doses lying above 160 mg Cr(III) L−1. On the other hand, literature data on Cr(VI) effects on activated sludge are even more controversial. A number of reports support that Cr(VI) is toxic to activated sludge at concentrations above 5 mg L−1, while others report growth stimulation at concentrations up to 25 mg L−1. However, all reports agree that Cr(VI) is definitely an activated sludge growth inhibitor at higher concentrations, while 80 mg Cr(VI) L−1 have been identified as lethal dose. A number of factors have been identified to influence chromium toxicity on activated sludge, such as, pH, biomass concentration, presence of organic substances or other heavy metals, acclimation process, exposure time, etc. Naturally, the presence of chromium species in wastewaters may affect the performance of wastewater treatment plants often causing malfunctions, particularly for industrial wastewaters containing relatively high chromium concentrations. The present work reviews in a critical way the published literature on chromium effects on activated sludge, and on the operation of wastewater treatment plants.  相似文献   

18.
Macrofungi are effective accumulators of Ag. This study provides a comprehensive review of this phenomenon supported by original data on the Ag concentrations of macrofungi from pristine and Ag-polluted areas. In pristine areas, the median Ag concentrations of ectomycorrhizal (ECM) and saprobic (SAP) macrofungi were 0.79 and 2.94 mg kg− 1, respectively. In these areas, hyperaccumulation thresholds for Ag in ECM and SAP macrofungi are proposed as 100 and 300 mg kg− 1, respectively. In a Ag-polluted area, the Ag concentrations in macrofungi (ECM and SAP) were significantly elevated with the median value of 24.7 mg kg− 1 and the highest concentrations in Amanita spp. of the section Vaginatae (304-692 mg kg− 1). The intracellular speciation of Ag in fruit-bodies of the Ag-accumulator Amanita submembranacea was inspected by size exclusion chromatography followed by sulfhydryl-specific fluorimetric assays of ligands using reverse phase high-performance liquid chromatography and improved polyacrylamide gel electrophoresis. Virtually all Ag was found to be intracellular and sequestered in the major 7 kDa and minor 3.3 kDa complexes. The lack of glutathione and phytochelatins and the presence of a single 3 kDa sulfhydryl-containing peptide in the isolated Ag-complexes suggest that detoxification of Ag in A. submembranacea may rely on metallothionein. Vertical distribution of Ag in a polluted forest soil profile has shown substantial enrichment in organic horizons; in polluted technosol, the highest Ag concentrations were found in surface layers. Standardized EDTA extraction of Ag in both the investigated soil profiles showed relatively low Ag extractibility, generally within the range of 2.2-7.7% of total Ag content.  相似文献   

19.
An integrated treatment method based on magnesium salt extraction followed by chemical oxidation was used for the treatment of a veterinary antibiotic, oxytetracycline (OTC) contaminated cow manure since animal manure can be an important source for antibiotic pollution in the environment. Pretreatment with magnesium salt enhanced the efficiencies of subsequent oxidation processes by extracting 63.9% of OTC from the manure thereby making it more favorable for oxidation with the hydroxyl radicals produced by the Fenton and ozone oxidation processes. Both the 24 h Fenton oxidation process with 434 mM H2O2 and 43.4 mM Fe2+ doses and the 1-h ozonation process with an applied ozone dose of 2.5 mg min− 1 provided more than 90% OTC removal from the manure slurry. However, the second-order OTC removal rate constant of Fenton process (119 M− 1s− 1) was remarkably lower than that obtained with the ozonation process (548 M− 1s− 1). The oxidant dose was a significant factor for the efficiency of the Fenton treatment but not for the ozone treatment. The efficiencies of both the Fenton and ozone oxidation processes were not affected by the pH adjustment of the manure slurry.  相似文献   

20.
Degradation kinetics and mineralization of an urban wastewater treatment plant effluent contaminated with a mixture of pharmaceutical compounds composed of amoxicillin (10 mg L−1), carbamazepine (5 mg L−1) and diclofenac (2.5 mg L−1) by TiO2 photocatalysis were investigated. The photocatalytic effect was investigated using both spiked distilled water and actual wastewater solutions. The process efficiency was evaluated through UV absorbance and TOC measurements. A set of bioassays (Daphnia magna, Pseudokirchneriella subcapitata and Lepidium sativum) was performed to evaluate the potential toxicity of the oxidation intermediates. A pseudo-first order kinetic model was found to fit well the experimental data. The mineralization rate (TOC) of the wastewater contaminated with the pharmaceuticals was found to be really slow (t1/2 = 86.6 min) compared to that of the same pharmaceuticals spiked in distilled water (t1/2 = 46.5 min). The results from the toxicity tests of single pharmaceuticals, their mixture and the wastewater matrix spiked with the pharmaceuticals displayed a general accordance between the responses of the freshwater aquatic species (P. subscapitata > D. magna). In general the photocatalytic treatment did not completely reduce the toxicity under the investigated conditions (maximum catalyst loading and irradiation time 0.8 g TiO2 L−1 and 120 min respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号