首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Vegetation monitoring has been performed using remotely sensed images to secure food production, prevent fires, and protect natural ecosystems. Recent satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS), provide frequent wide-scale coverage in multiple areas of the spectrum, allowing the estimation of a wide range of specialized vegetation indices (VIs), each offering several advantages. It is not, however, clear which VI performs better during operational monitoring of wide-scale vegetation patches, such as CORINE Land Cover (CLC) classes. The aim of this work was to investigate the performance of several VIs in operational monitoring of vegetation condition of CLC vegetation types, using Terra MODIS data. Comparison among the VIs within each CLC class was conducted using the sensitivity ratio, a statistical measure that has not been used to compare VIs and does not require calibration curves between each VI and a biophysical parameter. In addition, the VI’s sensitivity to factors such as the aspect, viewing angle, signal saturation, and partial cloud cover was estimated with correlation analysis in order to identify their operational monitoring ability. Results indicate the enhanced vegetation index as superior for monitoring vegetation condition among CLC types, but not always optimum in performance tests for operational monitoring.  相似文献   

2.
Optical vegetation indices (VIs) have been used to retrieve and assess biophysical variables from satellite reflectance data. These indices, however, also are sensitive to a number of confounding factors, such as canopy geometry, soil optical properties, and solar position. This suggests that VIs should be used cautiously for biophysical parameter estimation. Among biophysical variables, chlorophyll content is of particular importance as an indicator of photosynthetic activity. The goal of this study is to investigate the performance of multispectral optical VIs for chlorophyll content estimation in the world’s largest mangrove forest, the Sundarbans, and to compare these with machine-learning algorithms (MLAs). To this end, we have investigated the performance of 15 multispectral VIs and six state-of-the-art MLAs that are widely used for adaptive data fitting. The MLAs are Artificial Neural Networks (ANNs), Genetic Algorithm (GA), Gaussian Processes for Machine Learning (GPML), Kernel Ridge Regression (KRR), Locally Weighted Polynomials (LWP), and Multivariate Adaptive Regression Splines (MARS). We use an in situ data set of reflectance and chlorophyll measurements to develop and validate our models. Each MLA was evaluated 500 times with random partitions of training and validation data. Results showed that the weight optimization and term selection used within GA produce the most reliable chlorophyll content estimation. However, green normalized difference VI (GNDVI) is a simple and computationally efficient VI that produces results that are nearly as accurate as GA in terms of model fit and performance. Results also show that all methods except ANNs and MARS produce a quasi-linear relationship between spectral reflectance and chlorophyll content. Statistical transformations of GNDVI and chlorophyll content have the capability of further reducing model error.  相似文献   

3.
4.
Satellite data offer unrivaled utility in monitoring and quantifying large scale land cover change over time. Radiometric consistency among collocated multi-temporal imagery is difficult to maintain, however, due to variations in sensor characteristics, atmospheric conditions, solar angle, and sensor view angle that can obscure surface change detection. To detect accurate landscape change using multi-temporal images, we developed a variation of the pseudoinvariant feature (PIF) normalization scheme: the temporally invariant cluster (TIC) method. Image data were acquired on June 9, 1990 (Landsat 4), June 20, 2000 (Landsat 7), and August 26, 2001 (Landsat 7) to analyze boreal forests near the Siberian city of Krasnoyarsk using the normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and reduced simple ratio (RSR). The temporally invariant cluster (TIC) centers were identified via a point density map of collocated pixel VIs from the base image and the target image, and a normalization regression line was created to intersect all TIC centers. Target image VI values were then recalculated using the regression function so that these two images could be compared using the resulting common radiometric scale. We found that EVI was very indicative of vegetation structure because of its sensitivity to shadowing effects and could thus be used to separate conifer forests from deciduous forests and grass/crop lands. Conversely, because NDVI reduced the radiometric influence of shadow, it did not allow for distinctions among these vegetation types. After normalization, correlations of NDVI and EVI with forest leaf area index (LAI) field measurements combined for 2000 and 2001 were significantly improved; the r2 values in these regressions rose from 0.49 to 0.69 and from 0.46 to 0.61, respectively. An EVI “cancellation effect” where EVI was positively related to understory greenness but negatively related to forest canopy coverage was evident across a post fire chronosequence with normalized data. These findings indicate that the TIC method provides a simple, effective and repeatable method to create radiometrically comparable data sets for remote detection of landscape change. Compared to some previous relative radiometric normalization methods, this new method does not require high level programming and statistical skills, yet remains sensitive to landscape changes occurring over seasonal and inter-annual time scales. In addition, the TIC method maintains sensitivity to subtle changes in vegetation phenology and enables normalization even when invariant features are rare. While this normalization method allowed detection of a range of land use, land cover, and phenological/biophysical changes in the Siberian boreal forest region studied here, it is necessary to further examine images representing a wide variety of ecoregions to thoroughly evaluate the TIC method against other normalization schemes.  相似文献   

5.
Vegetation indices (VIs), which are combinations of various remote-sensing spectral bands, are widely used to study various biophysical properties. There are many articles introducing new VIs with the intention of minimizing factors such as soil background, canopy architecture, and row structure, while maximizing sensitivity to a specific biophysical characteristic such as the green leaf area index. Two VIs introduced in a previous study for the estimation of the biophysical characteristic green leaf area index are the modified chlorophyll absorption ratio index 2 (MCARI2) and modified triangular vegetation index 2 (MTVI2). This study and another study indicated that MTVI2 and MCARI2 gave identical results, but the mathematical similarity was not described in detail. Thus, future studies investigating the accuracy of VIs for estimating the biophysical characteristics need to examine either MCARI2 or MTVI2.  相似文献   

6.
The first year of Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) data for derivation of biophysical variables in Senegal, West Africa. The dynamic range of the two MODIS vegetation indices (VIs)—the continuity vegetation index (CVI) and the enhanced vegetation index (EVI)—is generally much larger than for the NOAA AVHRR normalized difference vegetation index (NDVI) data, indicating the importance of the change in near-infrared wavelength configuration from the NOAA AVHRR sensor to the MODIS sensor. Senegal is characterized by a pronounced gradient in the vegetation density covering a range of agro-climatic zones from arid to humid and it is found that the MODIS CVI values saturate for high VI values while the EVI demonstrates improved sensitivity for high biomass. Compared to NOAA AVHRR the MODIS VIs generally correlate better to the MODIS fraction of absorbed photosynthetically active radiation (fAPAR) absorbed by vegetation canopies and the leaf area index (LAI; the one-sided green leaf area per unit ground area). CVI is found to correlate better to both fAPAR and LAI than is the case for EVI because of the larger dynamic range of the CVI data. This suggests that the problem of background contamination on VIs from soil is not as severe in Senegal as has been found in other semi-arid African areas.  相似文献   

7.
The fraction of photosynthetically active radiation (FPAR) absorbed by vegetation – a key parameter in crop biomass and yields as well as net primary productivity models – is critical to guiding crop management activities. However, accurate and reliable estimation of FPAR is often hindered by a paucity of good field-based spectral data, especially for corn crops. Here, we investigate the relationships between the FPAR of corn (Zea mays L.) canopies and vegetation indices (VIs) derived from concurrent in situ hyperspectral measurements in order to develop accurate FPAR estimates. FPAR is most strongly (positively) correlated to the green normalized difference vegetation index (GNDVI) and the scaled normalized difference vegetation index (NDVI*). Both GNDVI and NDVI* increase with FPAR, but GNDVI values stagnate as FPAR values increase beyond 0.75, as previously reported according to the saturation of VIs – such as NDVI – in high biomass areas, which is a major limitation of FPAR-VI models. However, NDVI* shows a declining trend when FPAR values are greater than 0.75. This peculiar VI–FPAR relationship is used to create a piecewise FPAR regression model – the regressor variable is GNDVI for FPAR values less than 0.75, and NDVI* for FPAR values greater than 0.75. Our analysis of model performance shows that the estimation accuracy is higher, by as much as 14%, compared with FPAR prediction models using a single VI. In conclusion, this study highlights the feasibility of utilizing VIs (GNDVI and NDVI*) derived from ground-based spectral data to estimate corn canopy FPAR, using an FPAR estimation model that overcomes limitations imposed by VI saturation at high FPAR values (i.e. in dense vegetation).  相似文献   

8.
Human civilizations have made intensive use of the Mediterranean Basin for millennia, resulting in a profound impact on the natural ecosystems. Nowadays, the drier zones with degraded soils are covered with drought semi-deciduous plant communities. The aim of this study was to compare the ability of various spectral vegetation indices (VIs) computed from a Landsat Thematic Mapper (TM) image to discriminate different vegetation biophysical parameters of these communities and thus to assess their capability to monitor long-term vegetation changes. It was found that although semi-deciduous plants display a spectral behaviour similar to that of semi-arid vegetation, VIs can estimate not only vegetation abundance but also changes in vegetation structure. Normalized difference VIs are highly correlated to vegetation amount-related parameters while soil-related VIs respond basically to canopy structural parameters. Our results indicate that satellite imagery can be used to map biomass in Mediterranean scrubland regions, and show that it has the potential to discriminate types of semi-deciduous shrub communities with different crown architectures.  相似文献   

9.
Vegetation phenology characterizes seasonal life-cycle events that influence the carbon cycle and land-atmosphere water and energy exchange. We analyzed global phenology cycles over a six year record (2003-2008) using satellite passive microwave remote sensing based Vegetation Optical Depth (VOD) retrievals derived from daily time series brightness temperature (Tb) measurements from the Advanced Microwave Scanning Radiometer on EOS (AMSR-E) and other ancillary data inputs. The VOD parameter derives vegetation canopy attenuation at a given microwave frequency (18.7 GHz) and varies with canopy height, density, structure and water content. An error sensitivity analysis indicates that the retrieval algorithm can resolve the VOD seasonal cycle over a majority of global vegetated land areas. The VOD results corresponded favorably (p < 0.01) with vegetation indices (VIs) and leaf area index (LAI) information from satellite optical-infrared (MODIS) remote sensing, and phenology cycles determined from a simple bioclimatic growing season index (GSI) for over 82% of the global domain. Lower biomass land cover classes (e.g. savannas) show the highest correlations (R = 0.66), with reduced correspondence at higher biomass levels (0.03 < R < 0.51) and higher correlations for homogeneous land cover areas (0.41 < R < 0.83). The VOD results display a unique end-of-season signal relative to VI and LAI series, and may reflect microwave sensitivity to the timing of vegetation biomass depletion (e.g. leaf abscission) and associated changes in canopy water content (e.g. dormancy preparation). The VOD parameter is independent of and synergistic with optical-infrared remote sensing based vegetation metrics, and contributes to a more comprehensive view of land surface phenology.  相似文献   

10.
To estimate the gross CO2 flux (FCO2) of deciduous coniferous forest from canopy spectral reflectance, we introduced spectral vegetation indices (VIs) into a light use efficiency (LUE) model of mature Japanese larch (Larix kaempferi) forest. We measured the eddy covariance CO2 flux and spectral reflectance of larch canopy at half-hourly intervals during one growing season, and investigated the relationships between the parameters of the LUE model (FAPAR, ?) and 3 types of VIs (NDVI, PRI, EVI) in both clear sky and cloudy conditions.FAPAR (fraction of absorbed photosynthetically active radiation) had a positive linear relationship with both NDVI (normalized difference vegetation index) and EVI (enhanced vegetation index), and the sky condition had little effect on the relationships. The relative RMSE (root mean square error) of the APAR (absorbed photosynthetically active radiation) based on the incoming PAR and estimated FAPAR from a linear function of NDVI was less than 10.5%, irrespective of sky condition.Half-hourly values of ? (conversion efficiency of absorbed energy) showed both seasonal variation related to leaf phenology and short-term variation related to light intensity due to varied sun position and sky condition. Both EVI and PRI (photochemical reflectance index) were significantly correlated with ?. EVI showed a positive linear relationship with ? as a result of their similar seasonal variation. However, since EVI did not detect short-term variation of ?, their relationship differed among sky conditions. On the other hand, although PRI could trace the short-term variation of ? in green needles, the relationship became non-linear due to drastic reduction of PRI in the senescent needles.EVI/(PRI/PRImin), a combined index based on a 6-day moving minimum value of PRI (PRImin), showed a linear relationship with half-hourly values of ? throughout the seasons irrespective of sky condition. This index allow us to estimate ? in all sky conditions with a smaller error (rRMSE = 35.2%) than using EVI or PRI alone (38.7%-48.7%). Consequently, this combined index-derived ? and NDVI-based FAPAR gave a low estimation error of FCO2 (rRMSE = 36.4%, RMSE = 8.3 μmol m− 2 s− 1). Although there are still various issues to resolve, including adaptive limit and combination of vegetation index type, we conclude that the combination of PRI and EVI increased the accuracy of estimation of CO2 uptake in deciduous forest even though sky conditions varied.  相似文献   

11.
Influencing factor analysis is required for assessing the performance of vegetation fractional coverage (VFC) models with remote sensing imagery. This paper analyses influences of the radiometric correction level (RL), vegetation index (VI) and polynomial exponential power (EP) choice on VI–VFC relationship models. A SPOT 5 HRG image of Nanjing, China was chosen, and three RLs (digital number, top of atmosphere reflectance and post atmospheric correction reflectance) were used to derive six VIs, such as normalized difference vegetation index (NDVI) and ratio vegetation index (RVI). Fifty‐four models describing the VI–VFC relationship were established, and the influences of the RL, VI and EP choice on the VI–VFC models were analysed based on a statistical analysis of determination coefficients (R 2) of these models. The results showed that model robustness was jointly influenced by the three factors, so these three factors should be synthetically taken into account in VI–VFC modelling. It is recommended to establish different models between the VFC and various VIs derived from different RLs, and then to select the better ones.  相似文献   

12.
The Brazilian Cerrado biome comprises a vertically structured mosaic of grassland, shrubland, and woodland physiognomies with distinct phenology patterns. In this study, we investigated the utility of spectral vegetation indices in differentiating these physiognomies and in monitoring their seasonal dynamics. We obtained high spectral resolution reflectances, during the 2000 wet and dry seasons, over the major Cerrado types at Brasilia National Park (BNP) using the light aircraft-based Modland Quick Airborne Looks (MQUALS) package, consisting of a spectroradiometer and digital camera. Site-intensive biophysical and canopy structural measurements were made simultaneously at each of the Cerrado types including Cerrado grassland, shrub Cerrado, wooded Cerrado, Cerrado woodland, and gallery forest. We analyzed the spectral reflectance signatures, their first derivative analogs, and convolved spectral vegetation indices (VI) over all the Cerrado physiognomies. The high spectral resolution data were convolved to the MODIS, AVHRR, and ETM+ bandpasses and converted to the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI) to simulate their respective sensors. Dry and wet season comparisons of the measured biophysical attributes were made with the reflectance and VI data for the different Cerrado physiognomies. We found that three major domains of Cerrado could be distinguished with the dry and wet season spectral signatures and vegetation indices. The EVI showed a higher sensitivity to seasonality than the NDVI; however, both indices displayed seasonal variations that were approximately one-half that found with the measured landscape green cover dynamics. Inter-sensor comparisons of seasonal dynamics, based on spectral bandpass properties, revealed the ETM+-simulated VIs had the best seasonal discrimination capability, followed by MODIS and AVHRR. Differences between sensor bandpass-derived VI values, however, varied with Cerrado type and between dry and wet seasons, indicating the need for inter-sensor VI translation equations for effective multi-sensor applications.  相似文献   

13.
Opacity is a confidentiality property that characterizes whether a “secret” of a system can be inferred by an outside observer called an “intruder”. In this paper, we consider the problem of enforcing opacity in systems modeled as partially-observed finite-state automata. We propose a novel enforcement mechanism based on the use of insertion functions. An insertion function is a monitoring interface at the output of the system that changes the system’s output behavior by inserting additional observable events. We define the property of “i-enforceability” that an insertion function needs to satisfy in order to enforce opacity. I-enforceability captures an insertion function’s ability to respond to every system’s observed behavior and to output only modified behaviors that look like existing non-secret behaviors. Given an insertion function, we provide an algorithm that verifies whether it is i-enforcing. More generally, given an opacity notion, we determine whether it is i-enforceable or not by constructing a structure called the “All Insertion Structure” (AIS). The AIS enumerates all i-enforcing insertion functions in a compact state transition structure. If a given opacity notion has been verified to be i-enforceable, we show how to use the AIS to synthesize an i-enforcing insertion function.  相似文献   

14.
Understanding the relationships between root zone soil moisture and vegetation spectral signals will enhance our ability to manage water resources and monitor drought-related stress in vegetation. In this article, the relationships between vegetation indices (VIs) and in situ soil moisture under maize and soybean canopies were analysed using close-range reflectance data acquired at a rainfed cropland site in the US Corn Belt. Because of the deep rooting depths of maize plants, maize-based VIs exhibited significant correlations with soil moisture at a depth of 100 cm (P < 0.01) and kept soil moisture memory for a long period of time (45 days). Among the VIs applied to maize, the chrolophyll red-edge index (CIred-edge) correlated best with the concurrent soil moisture at 100 cm depth (P < 0.01) for up to 20 day lag periods. The same index showed a significant correlation with soil moisture at a 50 cm depth for lag periods from 10 (P < 0.05) to 60 days (P < 0.01). VIs applied to soybean resulted in statistically significant correlations with soil moisture at the shallower 10 and 25 cm depths, and the correlation coefficients declined with increasing depths. As opposed to maize, soybean held a shorter soil moisture memory as the correlations for all VIs versus soil moisture at 10 cm depth were strongest for the 5 day lag period. Wide dynamic range VI and normalized difference VI performed better in characterizing soil moisture at the 10 and 25 cm depths under soybean canopies when compared with enhanced VI and CIred-edge.  相似文献   

15.
植被指数在城市绿地信息提取中的比较研究   总被引:15,自引:0,他引:15       下载免费PDF全文
利用植被指数从TM 影像中提取植被, 从技术与经济成本方面综合考虑, 是一个比较好的手段。但在城市绿地信息提取中, 由于城市下垫面的特殊性和植被指数的繁多, 究竟哪些植被指数最适合于城市绿地, 还仍然是一个急待解决的难点问题。通过以上海中心城区为研究靶区, 利用单因子方差分析与多重比较对植被指数在城市绿地信息提取中的优劣进行比较研究, 得到如下结论: ①TM 影像经过植被指数计算处理后, 植被信息确实得到了增强, 但不同的植被指数也有所差别。如果以区分植被与非植被之间差异程度做标准, 那么植被指数提取植被由优到劣则依次是GEMI、RDVI、NDVI、GNDVI、RVI、TNDVI、DVI、EVI 和TGDVI。②植被指数基本能从TM 影像提取植被, 但把植被再细分的效果不是太好。总体来看, 除EVI 和TGDVI 以外, 植被指数能较好的区分草地与农田; 而树林与农田及草地与树林的区分则因不同的植被指数有所差异。区分草地与树林较好的是EVI, 区分草地与农田较好的是GEMI, 区分树林与农田较好的是TNDVI。③植被指数不但细分植被的效果不是太理想, 而且也不能很好的细分非植被地物。总体来说, 所有的植被指数都很难把建筑物与道路区别开, 尤其TGDVI、DVI 和EVI 更是如此。不过NDVI、GNDVI、TNDVI 和GEMI 能很好地把水体从TM 影像中提取出来, 其余的植被指数则只能区分植被与非植被, 不能再进一步的区分非植被地物。  相似文献   

16.
ABSTRACT

The fraction of absorbed photosynthetically active radiation (FPAR) by the vegetation canopy (FPARcanopy) is an important parameter for vegetation productivity estimation using remote-sensing data. FPARcanopy is widely estimated using many different spectral vegetation indices (VIs), especially the simple ratio vegetation index (SR) and normalized difference vegetation index (NDVI). However, there have been few studies into which VIs are most suitable for this estimation or into their sensitivities to the leaf area index and the observation geometry of remote-sensing data, which are very important for the accurate estimation of FPARcanopy based on the plant growth stage and satellite imagery. In this study, nine main VIs calculated from field-measured spectra were evaluated and it was found that the SR and NDVI underestimated and overestimated FPARcanopy, respectively. It was also found that the enhanced vegetation index produced lesser errors and a higher agreement than other broadband VIs used to estimate FPARcanopy. Among all the selected VIs, the photochemical reflectance index (PRI) turned out to have the lowest root mean square error of 0.17. The SR produced the highest errors (about 0.37) and lowest index of agreement (about 0.50) compared to the measured values of FPARcanopy. Except for carotenoid reflectance index (CRI), FPARcanopy estimated by VIs are evidently sensitive to the leaf area index (LAI), especially for FPARcanopy (SR), which are also most sensitive to solar zenith angles (SZA). SR, CRI, PRI, and EVI have remarked variations with view zenith angles. Our study shows that FPARcanopy can be simply and accurately estimated using the most suitable VIs – i.e. EVI and PRI – with broadband and hyperspectral remote-sensing data, respectively, and that the nadir reflectance or nadir bidirectional reflectance distribution function adjusted reflectance should be used to calculate these VIs.  相似文献   

17.
Ecological applications of remote-sensing techniques are generally limited to images after atmospheric correction, though other radiometric correction data are potentially valuable. In this article, six spectral vegetation indices (VIs) were derived from a SPOT 5 image at four radiometric correction levels: digital number (DN), at-sensor radiance (SR), top of atmosphere reflectance (TOA) and post-atmospheric correction reflectance (PAC). These VIs include the normalized difference vegetation index (NDVI), ratio vegetation index (RVI), slope ratio of radiation curve (K), general radiance level (L), visible-infrared radiation balance (B) and band radiance variation (V). They were then related to the leaf area index (LAI), acquired from in situ measurement in Hetian town, Fujian Province, China. The VI–LAI correlation coefficients varied greatly across vegetation types, VIs as well as image radiometric correction levels, and were not surely increased by image radiometric corrections. Among all 330 VI–LAI models established, the R 2 of multi-variable models were generally higher than those of the single-variable ones. The independent variables of the best VI–LAI models contained all VIs from all radiometric correction levels, showing the potentials of multi-radiometric correction images in LAI estimating. The results indicated that the use of VIs from multiple radiometric correction images can better exploit the capabilities of remote-sensing information, thus improving the accuracy of LAI estimating.  相似文献   

18.
In this paper, the problems of stability for switched positive linear systems (SPLSs) under arbitrary switching are investigated in a continuous-time context. The so-called “copositive polynomial Lyapunov function” (CPLF) giving a generalization of copositive types of Lyapunov function is first proposed, which is formulated in a higher order form of the positive states of the underlying systems. It is illustrated in this paper that some classical types of Lyapunov functions can be seen as special cases of the proposed CPLF. Then, new stability conditions are developed by the new Lyapunov function approach. It is also proved that the conservativeness of the obtained criteria can be further reduced as the degree of the Lyapunov function increases. A numerical example is given to demonstrate the effectiveness and less conservativeness of the developed techniques.  相似文献   

19.
Accurate estimates of vegetation biophysical variables are valuable as input to models describing the exchange of carbon dioxide and energy between the land surface and the atmosphere and important for a wide range of applications related to vegetation monitoring, weather prediction, and climate change. The present study explores the benefits of combining vegetation index and physically based approaches for the spatial and temporal mapping of green leaf area index (LAI), total chlorophyll content (TCab), and total vegetation water content (VWC). A numerical optimization method was employed for the inversion of a canopy reflectance model using Terra and Aqua MODIS multi-spectral, multi-temporal, and multi-angle reflectance observations to aid the determination of vegetation-specific physiological and structural canopy parameters. Land cover and site-specific inversion modeling was applied to a restricted number of pixels to build multiple species- and environmentally dependent formulations relating the three biophysical properties of interest to a number of selected simpler spectral vegetation indices (VI). While inversions generally are computationally slow, the coupling with the simple and computationally efficient VI approach makes the combined retrieval scheme for LAI, TCab, and VWC suitable for large-scale mapping operations. In order to facilitate application of the canopy reflectance model to heterogeneous forested areas, a simple correction scheme was elaborated, which was found to improve forest LAI predictions significantly and also provided more realistic values of leaf chlorophyll contents.The inversion scheme was designed to enable biophysical parameter retrievals for land cover classes characterized by contrasting canopy architectures, leaf inclination angles, and leaf biochemical constituents without utilizing calibration measurements. Preliminary LAI validation results for the Island of Zealand, Denmark (57°N, 12°E) provided confidence in the approach with root mean square (RMS) deviations between estimates and in-situ measurements of 0.62, 0.46, and 0.63 for barley, wheat, and deciduous forest sites, respectively. Despite the independence on site-specific in-situ measurements, the RMS deviations of the automated approach are in the same range as those established in other studies employing field-based empirical calibration.Being completely automated and image-based and independent on extensive and impractical surface measurements, the retrieval scheme has potential for operational use and can quite easily be implemented for other regions. More validation studies are needed to evaluate the usefulness and limitations of the approach for other environments and species compositions.  相似文献   

20.
Two robust adaptive control schemes for single-input single-output (SISO) strict feedback nonlinear systems possessing unknown nonlinearities, capable of guaranteeing prescribed performance bounds are presented in this paper. The first assumes knowledge of only the signs of the virtual control coefficients, while in the second we relax this assumption by incorporating Nussbaum-type gains, decoupled backstepping and non-integral-type Lyapunov functions. By prescribed performance bounds we mean that the tracking error should converge to an arbitrarily predefined small residual set, with convergence rate no less than a prespecified value, exhibiting a maximum overshoot less than a sufficiently small prespecified constant. A novel output error transformation is introduced to transform the original “constrained” (in the sense of the output error restrictions) system into an equivalent “unconstrained”one. It is proven that the stabilization of the “unconstrained” system is sufficient to solve the problem. Both controllers are smooth and successfully overcome the loss of controllability issue. The fact that we are only concerned with the stabilization of the “unconstrained” system, severely reduces the complexity of selecting both the control parameters and the regressors in the neural approximators. Simulation studies clarify and verify the approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号