共查询到5条相似文献,搜索用时 0 毫秒
1.
Erik Næsset 《Remote sensing of environment》2009,113(10):2210-1996
It has been suggested that airborne laser scanning (ALS) with high point densities could be used to monitor changes in the alpine tree line. The overall goal of this study was to assess the influence of ALS sensor and flight configurations on the ability to detect small trees in the alpine tree line and on the estimation of their heights. The study was conducted in a sub-alpine/alpine environment in southeast Norway. 342 small trees (0.11-5.20 m tall) of Norway spruce, Scots pine, and downy birch were precisely georeferenced and measured in field. ALS data acquired with two different instruments and at different flying altitudes (700-1130 m a.g.l.) with different pulse repetition frequencies (100, 125, and 166 kHz) were collected with a point density of all echoes of 7.7-11.0 m− 2. For each acquisition, three different terrain models were used to process the ALS point clouds in order to assess the effects of different preprocessing parameters on the ability to detect small trees. Regardless of acquisition and terrain model, positive height values were found for 91% of the taller trees (> 1 m). For smaller trees (< 1 m), 29-61% of the trees displayed positive height values. For the lowest repetition frequencies (100 and 125 kHz) in particular, the portion of trees with positive laser height values increased significantly with increasing terrain smoothing. For the highest repetition frequency there were no differences between smoothing levels, likely because of large ALS measurement errors at low laser pulse energy levels causing a large portion of the laser echoes to be discarded during terrain modeling. Error analysis revealed large commission errors when detecting small trees. The commissions consisted of objects like terrain structures, rocks, and hummocks having positive height values. The magnitude of commissions ranged from 709 to 8948% of the true tree numbers and tended to increase with increasing levels of terrain smoothing and with acquisitions according to increasing point densities. The accuracy of tree height derived from the ALS data indicated a systematic underestimation of true tree height by 0.35 to 1.47 m, depending on acquisition, terrain model, and tree species. The underestimation also increased with increasing tree height. The standard deviation for the differences between laser-derived and field-measured tree heights was 0.16-0.57 m. Because there are significant effects of sensor and flight configurations on tree height estimation, field calibration of tree heights at each point of time is required when using airborne lasers for tree growth monitoring. 相似文献
2.
Airborne laser scanner systems provide detailed forest information that can be used for important improvements in forest management decisions. Planning systems under development use plot-survey data to represent forest stands in large forest holdings which enables new flexible methods to model the forest and optimize selection of silvicultural treatments. In Sweden today, only averages of forest stand variables are used, and the survey methods used do not provide plot-survey data for all stands in large forest holdings. This is a task possibly solved using airborne laser scanner data. Various measures can be derived from laser data, each describing different forest variables, such as tree height distribution, vegetation density and vertical tree crown structure. Here, imputation of field plot (10 m radius) data using measures derived from airborne laser scanner data (TopEye) and optical image data (SPOT 5 HRG satellite sensor) were evaluated as a method to provide data for new long-term management planning systems. In addition to commonly applied measures, the semivariogram of laser measurements was evaluated as a new measure to extract spatial characteristics of the forest. The study used data from 870, 10 m radius field plots (0 to 812 m3 ha− 1) surveyed for a 1200 ha large forest estate in the south of Sweden. At the best, combining measures derived from laser scanner data and SPOT 5 data, stand mean volume was estimated with a root mean square error (RMSE) of 20% of the sample mean and stem density with 22% RMSE. Bias of stem density estimates was 5%, and stand stem volume 4%. Although these accuracies are sufficient for operational application, estimates of tree species proportions and within-stand variation were clearly not. 相似文献
3.
Hans Ole Ørka Erik Næsset Ole Martin Bollandsås 《Remote sensing of environment》2010,114(7):1445-1461
The objectives of this study were to quantify and analyze differences in laser height and laser intensity distributions of individual trees obtained from airborne laser scanner (ALS) data for different canopy conditions (leaf-on vs. leaf-off) and sensors. It was also assessed how estimated tree height, stem diameter, and tree species were influenced by these differences. The study was based on 412 trees from a boreal forest reserve in Norway. Three different ALS acquisitions were carried out. Leaf-on and leaf-off data were acquired with the Optech ALTM 3100 sensor, and an additional leaf-on dataset was acquired using the Optech ALTM 1233 sensor. Laser echoes located within the vertical projection of the tree crowns were attributed to different echo categories (“first echoes of many”, “single echoes”, “last echoes of many”) and analyzed. The most pronounced changes in laser height distribution from leaf-on to leaf-off were found for the echo categories denoted as “single” and “last echoes of many” where the distributions were shifted towards the ground under leaf-off conditions. The most pronounced change in the intensity distribution was found for “first echoes of many” where the distribution was extremely skewed towards the lower values under leaf-off conditions compared to leaf-on. Furthermore, the echo height and intensity distributions obtained for the two different sensors also differed significantly. Individual tree properties were estimated fairly accurately in all acquisitions with RMSE ranging from 0.76 to 0.84 m for tree height and from 3.10 to 3.17 cm for stem diameter. It was revealed that tree species was an important model term in both and tree height and stem diameter models. A significantly higher overall accuracy of tree species classification was obtained using the leaf-off acquisition (90 vs. 98%) whereas classification accuracy did not differ much between sensors (90 vs. 93%). 相似文献
4.
Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser 总被引:9,自引:0,他引:9
Regression models relating variables derived from airborne laser scanning (ALS) to above-ground and below-ground biomass were estimated for 1395 sample plots in young and mature coniferous forest located in ten different areas within the boreal forest zone of Norway. The sample plots were measured as part of large-scale operational forest inventories. Four different ALS instruments were used and point density varied from 0.7 to 1.2 m− 2. One variable related to canopy height and one related to canopy density were used as independent variables in the regressions. The statistical effects of area and age class were assessed by including dummy variables in the models. Tree species composition was treated as continuous variables. The proportion of explained variability was 88% for above- and 85% for below-ground biomass models. For given combinations of ALS-derived variables, the differences between the areas were up to 32% for above-ground biomass and 38% for below-ground biomass. The proportion of spruce had a significant impact on both the estimated models. The proportion of broadleaves had a significant effect on above-ground biomass only, while the effect of age class was significant only in the below-ground biomass model. Because of local effects on the biomass-ALS data relationships, it is indicated by this study that sample plots distributed over the entire area would be needed when using ALS for regional or national biomass monitoring. 相似文献
5.
Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling 总被引:3,自引:0,他引:3
David Riaño Erich Meier Britta Allgöwer Emilio Chuvieco Susan L. Ustin 《Remote sensing of environment》2003,86(2):177-186
Methods for using airborne laser scanning (also called airborne LIDAR) to retrieve forest parameters that are critical for fire behavior modeling are presented. A model for the automatic extraction of forest information is demonstrated to provide spatial coverage of the study area, making it possible to produce 3-D inputs to improve fire behavior models.The Toposys I airborne laser system recorded the last return of each footprint (0.30-0.38 m) over a 2000 m by 190 m flight line. Raw data were transformed into height above the surface, eliminating the effect of terrain on vegetation height and allowing separation of ground surface and crown heights. Data were defined as ground elevation if heights were less than 0.6 m. A cluster analysis was used to discriminate crown base height, allowing identification of both tree and understory canopy heights. Tree height was defined as the 99 percentile of the tree crown height group, while crown base height was the 1 percentile of the tree crown height group. Tree cover (TC) was estimated from the fraction of total tree laser hits relative to the total number of laser hits. Surface canopy (SC) height was computed as the 99 percentile of the surface canopy group. Surface canopy cover is equal to the fraction of total surface canopy hits relative to the total number of hits, once the canopy height profile (CHP) was corrected. Crown bulk density (CBD) was obtained from foliage biomass (FB) estimate and crown volume (CV), using an empirical equation for foliage biomass. Crown volume was estimated as the crown area times the crown height after a correction for mean canopy cover. 相似文献