首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The primary purpose of ice-sheet altimetry is to monitor the changes in ice-sheet topography which may impact on global sea-level. However, the altimetric signal is sensitive to different properties of the snowpack, and therefore can also be used to determine these properties. The radar altimeter onboard the European Space Agency's ENVISAT satellite provides a dual-frequency dataset at Ku (13.6 GHz) and S band (3.2 GHz). In this paper, these signals are studied over the Antarctic ice-sheet during the 4 first years of the mission (2002-2006), in order to retrieve snowpack properties.The altimeter signal can be described by 4 classical waveform parameters. The 4 year time-series of all these parameters are decomposed into a linear and a seasonal time component. The linear component is almost constant. The distribution of the mean parameters over the Antarctic ice-sheet shows that the altimeter signal is sensitive to small-scale (mm) surface roughness.For the first time, the amplitudes and phases of the seasonal variations are characterized. The S band amplitudes are greater than the Ku band, and the phase varies over the entire ice-sheet. Previous studies suggested that the seasonal variations of the altitude from the altimeter are created by a decrease of the snowpack height through compaction. The dual-frequency observations shown here suggest that this hypothesis is too simple. Instead, the altitude variations observed in the altimetric signal are not created by the snowpack height change, but are more likely caused by the seasonal change of the snow properties, which cause a different response between the S and Ku bands. Therefore, both the linear and the seasonal variations of the altimetric signal can be used to retrieve snowpack properties.Here, we compare the dual-frequency ENVISAT signal with a model of the altimetric echo over the Antarctic ice-sheet. The model combines a surface model with a sub-surface model, for both the S and Ku bands. The Brown model [Brown G. S. (1977). The average impulse response of a rough surface and its applications. IEEE Transactions on Antennas and Propagation, 25, 1.] is used to describe the interaction of the radar wave with the snow surface. The backscatter coefficient of the surface is derived using the IEM method [Fung, A. K. (1994). Microwave scattering and emission models and their applications, Boston, MA: Artech House.]. The sub-surface signal takes into account both the layering effects and the scattering caused by the homogeneous media which is composed of small snow grains. The model is tested in two areas of the Antarctic plateau which present very different waveform parameters. The sensitivity of the radar signal to the different snowpack properties is investigated. The analysis of the waveform behaviours shows that the sub-surface signal can be completely masked by the small-scale surface roughness signal.Finally, the temperature and surface density effects are investigated in order to explain the seasonal variations of the altimetric signal. Both the temperature and the compaction rate of the snow change seasonally. Temperature is shown to impact on the Ku band signal. Furthermore, the compaction rate of the snow surface can explain all of the seasonal variation characteristics observed at both the S and Ku bands. The seasonal change of compaction rate in the snow creates a change in the waveform shape that can bias the altitude. In particular, the snow compaction can induce a bias in the retrieved altimetric altitude of more than 80 cm for the Ku band and 1.5 m for the S band. This work underlines that the altitude time-series needs to be corrected for the shape of the altimetric echo over ice-sheets.  相似文献   

2.
We present results of snow surface properties using the ENVISAT dual frequency altimeter at S (3.2 GHz) and Ku (13.6 GHz) bands and the AMSR-E microwave radiometer at frequencies ranging between 6 and 36 GHz in the Vostok region, East Antarctica. The altimetric time series observed between 2002 and 2008 show variations at 3 different time scales (daily, seasonal and inter-annual), that correlate directly with variations in the snow surface properties. In this study we focus on the analysis of the rapid daily event, occurring on February 14th 2005, that created a jump of the backscatter coefficient of up to 5.3 dB at the S band and 2.5 dB at the Ku band. The ratio of V/H-polarization brightness temperature slowly decreased in December and January 2005, and suddenly increased on February 14th 2005.The origin of this rapid event is investigated using AWS data from Vostok station, altimetric and radiometric data simultaneously. Both snow surface density and roughness are found to vary during this event. This event is shown to be synchronous with strong wind occuring during a period of anomalous wind direction, and the presence of surface hoar. These particular conditions certainly modified the snow surface roughness and thus impacted the altimetric signal. We finally investigate the impact of this event on the calculation of the regional ice-sheet mass-balance using different corrections of height with echo shape variations. It is shown to be negligible only if the full echo shape correction (Legresy et al., 2006) is used.  相似文献   

3.
4.
From September 2002 to October 2010, the Envisat radar altimeter surveyed Greenland and Antarctica ice sheets on a 35 day repeat orbit, providing a unique data set for ice sheet mass balance studies. Up to 85 repeat cycles are available and the whole Envisat data set may be along-track processed in order to provide height variability and trend with a good spatial resolution for the objectives of ice sheet survey.

Soon, a joint Centre National d’Etudes Spatiales/Indian Space Research Organisation mission, SARAL (Satellite with Argos and AltiKa), with the AltiKa payload on board, will be launched on exactly the same orbit (less than 1 km of the nomimal orbit in the across-track direction). This will allow an extension of previous European Remote Sensing (ERS) satellite, ERS-1 and ERS-2, and Envisat missions of the European Space Agency (ESA), in particular from the point of view of ice altimetry. However, AltiKa operates in the Ka band (36.8 GHz), a higher frequency than the classical Ku band (13.6 GHz), leading to important modifications and potential improvements in the interactions between radar wave and snow-pack.

In this paper, a synthesis is presented of all available information relevant to ice altimetry scientific purposes as derived from the Envisat mission: mean and temporal derivatives of the height ? but also of the backscatter and of the two waveform parameters ? snow-pack change corrections, across-track surface slope at 1 km scale, etc. The spatial and temporal variability of ice sheet surface elevation is investigated with the help of the high-resolution Envisat along-track observations. We show that at least 50 repeat cycles are needed to reach the required accuracy for the elevation trend. It is thus advocated as potentially highly beneficial for SARAL/AltiKa as a follow-on mission. Moreover, the novel characteristics of SARAL/AltiKa are promising in improving our understanding of snow penetration impact.  相似文献   

5.
This study presents a first attempt to estimate the extent and seasonality of northern wetlands using radar altimeter satellite observations. The sensitivity of the Topex‐Poseidon dual‐frequency radar altimeter to detect inundation is investigated and compared with passive and active microwave satellite measurements along with a land surface climatology database. The C band backscatter altimeter signal clearly tracks passive microwave emissivity observations of wetlands and is able to detect small flooded areas. Because of the nadir incidence angle, the radar altimeter also shows more capability to detect wetlands than the C band scatterometer. Monthly flooded areas are calculated by estimating flooded pixel fractional coverage using the altimeter C band backscatter magnitude and a linear mixing model with dual‐frequency altimeter backscatter difference, C–Ku, to account for vegetation effects. Because of the Topex‐Poseidon satellite spatial coverage, the results are given only from 40° N to 66° N. This region nevertheless represents more than 30% of world's inundated surfaces during the summer. A direct validation of the inundated extent is unfortunately impossible on a large scale, due to the scarcity of quantitative observations. As a consequence, the results are evaluated by comparison with other existing estimates. Radar altimetry estimates, comprising natural wetlands and river/lakes, indicate a maximum inundated area of 1.86×106 km2 for July 1993 and 1994 as compared with 1.31×106 km2 from passive microwave technique and ~2.10×106 km2 from climatology dataset. The wetland seasonal variability derived from the altimeter and passive microwave techniques agrees well. These promising results could soon be applied to the ENVISAT dual‐frequency radar altimeter that will provide a better survey of global inundated surfaces thanks to its much more complete spatial coverage.  相似文献   

6.
Satellite radar altimeters and scatterometers deployed over ice sheets experience backscatter from the surface and from within the snowpack, termed surface and volume backscatter respectively. In order to assess the errors in satellite altimeter measurements it is vital to know where the return is originating from in the snowpack. This return can vary spatially and temporally. Seasonal variations in the volume backscatter can be a major complicating factor in the radar return from the percolation zone. Ground-based step-frequency radar was deployed in the percolation zone of the Greenland Ice Sheet at ∼ 1945 m elevation (69 51N, 47 15W). Previous measurements in this area made by scientists from the Byrd Polar Research Centre and the University of Kansas, undertaken prior to summer melt events, have shown the strongest backscatter from ice features at around 1 m depth buried beneath the previous end-of-summer surface. In autumn 2004, radar measurements in the Ku band with bandwidths of 1 and 8 GHz were made alongside detailed stratigraphic observations within a 1 km2 site. The radar results revealed no continuous reflecting horizons in the upper 3.5 m of the firn. Shallow cores and snowpits also indicated that there were no spatially continuous stratigraphic horizons across the study site. An average electromagnetic wave velocity of 2.11 ± 0.05 × 108 m s− 1 was determined for the upper metre of the firn. Surface and volume backscatter at vertical incidence were calculated using a standard model. The contribution of the surface backscatter to the total backscatter was on average 6 dB higher than that of the volume backscatter. However, at the higher 8 GHz bandwidth the strongest return frequently originated not from the surface but from within the upper 30 cm of the snowpack, most probably from thin ice layers. At 1 GHz bandwidth these ice layers were not always resolved; their return merged with the surface return, causing it to broaden, with the peak and leading edge moving down. Modelling using density and thickness measurements from shallow cores and snowpits showed that the backscatter from these shallow, thin ice layers could be stronger than the surface return owing to constructive interference from the top and base of the layers.  相似文献   

7.
Sea ice thickness is a crucial, but very undersampled cryospheric parameter of fundamental importance for climate modeling. Advances in satellite altimetry have enabled the measurement of sea ice freeboard using satellite microwave altimeters. Unfortunately, validation of these new techniques has suffered from a lack of ground truth measurements. Therefore, an airborne campaign was carried out in March 2006 using laser altimetry and photo imagery to validate sea ice elevation measurements derived from the Envisat/RA-2 microwave altimeter.We present a comparative analysis of Envisat/RA-2 sea ice elevation processing with collocated airborne measurements collected north of the Canadian Archipelago. Consistent overall relationships between block-averaged airborne laser and Envisat elevations are found, over both leads and floes, along the full 1300 km aircraft track. The fine resolution of the airborne laser altimeter data is exploited to evaluate elevation variability within the RA-2 ground footprint. Our analysis shows good agreement between RA-2 derived sea ice elevations and those measured by airborne laser altimetry, particularly over refrozen leads where the overall mean difference is about 1 cm. Notwithstanding this small 1 cm mean difference, we identify a larger elevation uncertainty (of order 10 cm) associated with the uncertain location of dominant radar targets within the particular RA-2 footprint. Sources of measurement uncertainty or ambiguity are identified, and include snow accumulation, tracking noise, and the limited coverage of airborne measurements.  相似文献   

8.
Based on the specular reflection theory of electromagnetic waves at rough sea surface and the wind wave spectrum model with a wave age factor, the sea surface wind speeds are retrieved from the normalized radar backscatter cross‐section (NRCS) measured by TOPEX/Poseidon (T/P) Ku‐band altimeter using the mean square slope (MSS) calculated from the spectrum models of the wind waves and the gravity‐capillary waves. A relationship between wave age and non‐dimensional wave height is applied to compute the wave age factor using the significant wave height (SWH) and wind speeds obtained from buoy or altimeter simultaneously. The study indicates that the wave age factor has a significant impact on the retrieval of altimeter wind speed. Compared with the operational algorithm for retrieving altimeter wind speed, the wind speed retrieved from the new analytical algorithm based on the wind wave spectrum model with the wave age factor, proposed in this study, can match the buoy measurements better. The effects of the wave age factor on altimeter wind speed retrieval are also shown quantitatively through a series of experiments and measurements. The comparison with the operational algorithm indicates that both the bias and root mean square error (RMSE) between wind speeds retrieved by the proposed analytical algorithm and those observed by the buoy decrease significantly. In the Gulf of Mexico, with the new analytical algorithm, more accurate altimeter wind speeds are retrieved.  相似文献   

9.
The temporal and spatial variability of sea-ice radar signatures in the Southern Ocean during late winter, spring and early summer from QuikSCAT data is presented. We observe a circumpolar and broad band of sea-ice close to the marginal ice zone that is characterized by very high radar backscatter. This feature is explained through detailed in situ observations of snow and sea-ice properties as well as in relation to meteorological conditions, which were derived from US National Center for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis data. Our results indicate that high backscatter regions are caused by metamorphous snow, which forms through re-freezing after short-term melt events. This process is connected with the episodic passes of low-pressure systems entraining warmer air from the north. South of the Antarctic Circumpolar Trough, sea-ice is not affected by this influence and shows spatially homogenous microwave signatures with low backscatter.  相似文献   

10.
Abstract

Radiometric measurements on snow in LANDSAT MSS wavebands have shown a correlation between snow condition and the ratio of green/infrared (band 4/band 7) wavebands. Systematic changes from wet dense snow at tow altitudes to dry less dense snow at higher altitudes should be revealed by a decrease in the intensity ratio band 4/band 7 with altitude. However, analysis of spring LANDSAT MSS images for the Cairngorm Mountains shows that the intensity ratio band 4/band 7 actually increases with altitude. A mixed-pixel hypothesis is invoked to account for this pattern. The results suggest that only in areas where the snow cover is continuous can information on snow condition be reliably obtained from LANDSAT MSS data.  相似文献   

11.
The seasonal transition of the boreal forest between frozen and non-frozen conditions affects a number of ecosystem processes that cycle between winter dormant and summer active states. The relatively short Ku-band wavelength (2.14 cm) of the space-borne NASA scatterometer (NSCAT) is sensitive to changes in dielectric properties, associated with large-scale changes in the relative abundance and phase (frozen or thawed) of canopy and surface water. We used a temporal change detection analysis of NSCAT daily radar backscatter measurements to characterize the 1997 seasonal spring thaw transition period across the 106 km2 BOREAS study region of central Canada. In the spring, air temperature transitions from frozen to non-frozen conditions and surface observations of seasonal snow cover depletion were generally coincident with decreases in radar backscatter of more than 2.9 dB, regardless of regional landcover characteristics. We used a temporal classification of NSCAT daily differences from 5-day smoothed backscatter values to derive three simple indices describing the initiation, primary event and completion of the spring thaw transition period. Several factors had a negative impact on the relative accuracy of NSCAT-based results, including periodic gaps in NSCAT daily time-series information and a large (i.e., >2 cm day−1) spring rainfall event. However, these results were generally successful in capturing the seasonal transition of the region from frozen to non-frozen conditions, based on comparisons with regional weather station network information. These results illustrate the potential for improved assessment of springtime phenology and associated ecosystem dynamics across high latitude regions, where field based and optical remote-sensing methods are substantially degraded by frequent cloud cover, low solar illumination and sparse surface weather station networks.  相似文献   

12.
Synergistic measurements of both active and passive nadir looking microwave sensors onboard Topex/Poseidon (T/P) satellite are explored for their instantaneous rain estimation capability over tropical oceans. Data of T/P altimeter (the differential radar backscatter at C and Ku band frequencies, i.e. δσ°?=?σ°C?σ°Ku), and Topex microwave radiometer (TMR) (brightness temperatures at 18, 21 and 37?GHz frequencies) coincident with special sensor microwave/imager (SSM/I) and tropical rainfall measuring mission (TRMM)–microwave radiometer (TMI) have been analysed for this purpose. The rainfall response has been separated from the surface variability and atmospheric water content (in terms of water vapour and liquid water), by analysing the TMR data in view of the radiative response of its channels under different ocean–atmospheric conditions over the Indian oceanic region. Among a large collocated data on different spatial and temporal scales, the most restrictive criteria (<?10?km spatial, <?30?min temporal difference) produce the better statistics (in terms of correlation and rms errors) from the rainfall rate from SSM/I and TMI with the combined radar and radiometric observations from T/P and TMR respectively. The analysis thus shows the added advantage of optimally integrated active and passive microwave measurements for instantaneous rain estimation as compared to our earlier study (Varma et al. ) by passive TMR measurements alone, for both better estimation of rain and corrections to T/P radar backscatter due to its path attenuation. The equation is further used to estimate monthly averaged global rain rate maps for its qualitative and quantitative assessment. Typical rain rate maps from blended radar and radiometer for two contrasting seasons for the months of January and July for the year 2000 (during the north‐east and south‐west monsoon respectively), are compared with similar maps of TRMM–precipitation radar of monthly rainfall accumulations, showing most of the regional and global tropical features delineated.  相似文献   

13.
FFT运算是星载海洋雷达高度计实时跟踪处理的重要步骤,现代高分辨率雷达高度计要求处理速度更高,这时如果采用软件来进行FFT运算会导致处理时间过长。考虑到上星的需要,提出了一种采用FPGA技术来硬件实现高度计的FFT运算方法,理论和实验结果证明,采用此技术完全能满足高度计有关精度和处理速度的要求,解决了高分辨率星载雷达高度计控制中的一项关键的技术问题。  相似文献   

14.
根据我国现有技术水平,提出了一种测高精度为±10cm的星载海洋雷达高度计方案。采用固态放大器和“全去斜坡”技术,围绕着一个微处理器建立起来的自适应跟踪器在频谱分析的基础上完成高度跟踪功能。采用固态放大器,其特征是脉冲压缩比较高、低重量及低发射功率,因而可靠性较高,易于被平台接纳。  相似文献   

15.
Abstract

The backscatter properties of Seasat altimeter data in the Beaufort Sea on the 3 October 1978 show distinct zones, which arc interpreted in terms of geophysical characteristics. An overlapping and near-simultaneous synthetic-aperture radar image shows regions of open water, new ice and multi-year sea ice, which correspond to the different zones. It is found that the altimeter signal is sensitive to the ocean-ice boundary and that it indicates the ice type. The pulse-echo waveforms also suggest that several scattering components are present in the returned power over sea ice.  相似文献   

16.
The presence of snow strongly impacts the exchange of moisture and energy between the land surface and atmosphere. In the interior of the northern hemisphere continents, snowmelt on frozen soils can cause or exacerbate major floods. Microwave remote sensing from satellite platforms has the potential to monitor the freeze-thaw status of soil and overlying snow packs over large areas. We evaluate the backscatter response of the NSCAT scatterometer to changing snow surface conditions, especially freeze and thaw status, using a macroscale hydrology model and the NSCAT backscatter data for the upper Mississippi River basin of the north central U.S. and the Boreal Ecosystem Atmosphere Study (BOREAS) region in central Canada. We compared the snowmelt conditions simulated by the Variable Infiltration Capacity (VIC) macroscale hydrology model driven with surface meteorological observations with NSCAT measurements for 1996-1997 snow season. A mid-winter thaw event (in February) and late season melt (April-May) are evaluated for both regions. Comparison of backscatter images with daily and hourly-modeled snow surface wetness and temperature showed that the model agreed with the backscatter for snow surface wetness on some days but not on others. Factors such as NSCAT overpass times, vegetation on the ground and their freeze-thaw state, and liquid moisture content appear to contribute to these discrepancies.  相似文献   

17.
Detailed snowpack observations, meteorology, topography and landcover classification were integrated with multi‐temporal SAR data to assess its capability for landscape scale snowmelt mapping at the forest–tundra ecotone. At three sites along an approximately 8° latitudinal gradient in the Fennoscandian mountain range, 16 multi‐temporal spaceborne ERS‐2 synthetic aperture radar (SAR) were used for mapping snowmelt.

Comparison of field measurements and backscatter values demonstrates the difficulty of interpreting observed backscatter response because of complex changes in snow properties on diurnal and seasonal temporal scales. Diurnal and seasonal melt–freeze effects in the snowpack, relative to the timing of ERS‐2 SAR image acquisition, effectively reduce the temporal resolution of such data for snow mapping, even at high latitudes.

The integration of diverse data sources did reveal significant associations between vegetation, topography and snowmelt. Several problems with the application of thresholding for the automatic identification of snowmelt were encountered. These largely related to changes in backscattering from vegetation in the late stages of snowmelt. Due to the impact of environmental heterogeneity in vegetation at the forest–tundra ecotone, we suggest that the potential to map snow cover using single polarization C‐band SAR at the forest–tundra ecotone may be limited to tundra areas.  相似文献   

18.
Backscattering signatures of various Baltic Sea ice types and open water leads were measured with the helicopter-borne C- and X-band Helsinki University of Technology scatterometer (HUTSCAT) during six ice research campaigns in 1992–1997. The measurements were conducted at incidence angles of 23° and 45°. The HUTSCAT data were assigned by video imagery into various surface type categories. The ground data provided further classification of the HUTSCAT data into different snow wetness categories (dry, moist and wet snow). Various basic statistical parameters of backscattering signature data were used to study discrimination of open water leads and various ice types. The effect of various physical parameters (e.g. polarization, frequency, snow condition) on the surface type discrimination was investigated. The results from the data analysis can be used to help the development of sea ice classification algorithms for space-borne SAR data (e.g. Radarsat and Envisat). According to the results from the maximum likelihood classification it is not possible to reliably distinguish various surface types in the SAR images only by their backscatter intensity. In general, the best ice type discrimination accuracy is achieved with C-band VH-polarization σ° at an incidence angle of 45°.  相似文献   

19.
Results from several previously published algorithms for wet snow detection in Antarctica from K-band spaceborne brightness temperature are compared and evaluated vs. estimates of wet snow conditions from ground measurements. In addition, a new physically-driven algorithm, in which the detectable liquid water content is assumed constant, is proposed and assessed. All algorithms are also evaluated by analyzing their results during collapses of ice shelves. Two algorithms are selected for deriving updated trends of melting index (MI, the number of melting days times the area subject to melting) between 1979 and 2008 over the whole Antarctica and at sub-continental scales. In the first algorithm wet snow is identified when brightness temperature exceeds the mean of winter brightness temperature plus 30 K and the second is the new model-based approach described here. Both negative and positive MI trends are obtained, depending on the algorithm used. A high number of melting days (up to 100 days) are detected over the Wilkins ice shelf, the Peninsula and the George VI ice shelf. Over East Antarctica, the West and Amery ice shelves are subject to melting for a maximum of approximately 50 days. Positive trends of number of melting days are detected over most of the West Antarctica, with peak values up to 1.2 days/year over the Larsen C ice shelf, 1.8 days/year over the George VI ice shelf and 0.55 days/year over the Wilkins ice shelf area. The correlation between MI values and December-January (DJ) averaged air/surface temperature over selected locations show values ranging between ∼ 0.8 and ∼ 0.4. Results suggest that a 1 °C increase in the monthly averaged DJ air/surface temperature corresponds to an average MI increase of approximately 2·106 × km2 × day.  相似文献   

20.
Satellite altimetry is a powerful tool to map the ice sheet elevation as well as a number of other parameters linked to geometrical and geophysical properties of ice sheets. Irrespective of new instrumental developments like the laser altimeter on ICESat (Ice, Cloud and land Elevation Satellite) the well-established radar altimeter (RA) missions ERS-1,2 (European Remote Sensing satellites) and ENVISAT (ENVIronment SATellite) are unique in their temporal coverage over more than a decade and in their temporal and spatial sampling. Therefore, the full exploitation of these RA data by improved methods is imperative. Here we develop improved techniques to correct for topographically induced errors by a refined consideration of the relevant topographic conditions. Furthermore we improve the gridding procedure by adapting it to local conditions and thus preserving smaller-scale features. We apply our methods to the region of the subglacial Lake Vostok/Antarctica and derive digital elevation models (DEMs) for this region with the aim of improving/resolving smaller scales. The effect of our improvements is demonstrated in detail by comparing our DEMs and previously published DEMs to the ICESat laser measurements which are taken as a reference here. Due to our improvements, the standard deviation of the difference between RA-based DEMs of the Lake Vostok region and ICESat data decreases from more than 1.1 m to 0.5 m. This remaining error is chiefly the error inherent in the RA observations. Our RA-ICESat comparisons, supported by Fourier analyses, also reveal the presence and importance of small-scale features that can be detected by laser but not by the RA measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号