首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scanning Light Detecting and Ranging (LiDAR), Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) were analyzed to determine (1) which of the three sensor systems most accurately predicted forest biomass, and (2) if LiDAR and SAR/InSAR data sets, jointly considered, produced more accurate, precise results relative to those same data sets considered separately. LiDAR ranging measurements, VHF-SAR cross-sectional returns, and X- and P-band cross-sectional returns and interferometric ranges were regressed with ground-estimated (from dbh) forest biomass in ponderosa pine forests in the southwestern United States. All models were cross-validated. Results indicated that the average canopy height measured by the scanning LiDAR produced the best predictive equation. The simple linear LiDAR equation explained 83% of the biomass variability (n = 52 plots) with a cross-validated root mean square error of 26.0 t/ha. Additional LiDAR metrics were not significant to the model. The GeoSAR P-band (λ = 86 cm) cross-sectional return and the GeoSAR/InSAR canopy height (X-P) captured 30% of the forest biomass variation with an average predictive error of 52.5 t/ha. A second RaDAR-FOPEN collected VHF (λ ∼ 7.8 m) and cross-polarized P-band (λ = 88 cm) cross-sectional returns, none of which proved useful for forest biomass estimation (cross-validated R2 = 0.09, RMSE = 63.7 t/ha). Joint consideration of LiDAR and RaDAR measurements produced a statistically significant, albeit small improvement in biomass estimation precision. The cross-validated R2 increased from 83% to 84% and the prediction error decreased from 26.0 t/ha to 24.9 t/ha when the GeoSAR X-P interferometric height is considered along with the average LiDAR canopy height. Inclusion of a third LiDAR metric, the 60th decile height, further increased the R2 to 85% and decreased the RMSE to 24.1 t/ha. On this 11 km2 ponderosa pine study area, LiDAR data proved most useful for predicting forest biomass. RaDAR ranging measurements did not improve the LiDAR estimates.  相似文献   

2.
In the context of reducing emissions from deforestation and forest degradation (REDD) and the international effort to reduce anthropogenic greenhouse gas emissions, a reliable assessment of aboveground forest biomass is a major requirement. Especially in tropical forests which store huge amounts of carbon, a precise quantification of aboveground biomass is of high relevance for REDD activities. This study investigates the potential of X- and L-band SAR data to estimate aboveground biomass (AGB) in intact and degraded tropical forests in Central Kalimantan, Borneo, Indonesia. Based on forest inventory data, aboveground biomass was first estimated using LiDAR data. These results were then used to calibrate SAR backscatter images and to upscale the biomass estimates across large areas and ecosystems. This upscaling approach not only provided aboveground biomass estimates over the whole biomass range from woody regrowth to mature pristine forest but also revealed a spatial variation due to varying growth condition within specific forest types. Single and combined frequencies, as well as mono- and multi-temporal TerraSAR-X and ALOS PALSAR biomass estimation models were analyzed for the development of accurate biomass estimations. Regarding the single frequency analysis overall ALOS PALSAR backscatter is more sensitive to AGB than TerraSAR-X, especially in the higher biomass range (> 100 t/ha). However, ALOS PALSAR results were less accurate in low biomass ranges due to a higher variance. The multi-temporal L- and X-band combined model achieved the best result and was therefore tested for its temporal and spatial transferability. The achieved accuracy for this model using nearly 400 independent validation points was r² = 0.53 with an RMSE of 79 t/ha. The model is valid up to 307 t/ha with an accuracy requirement of 50 t/ha and up to 614 t/ha with an accuracy requirement of 100 t/ha in flat terrain. The results demonstrate that direct biomass measurements based on the synergistic use of L- and X-band SAR can provide large-scale AGB estimations for tropical forests. In the context of REDD monitoring the results can be used for the assessment of the spatial distribution of the biomass, also indicating trends in high biomass ranges and the characterization of the spatial patterns in different forest types.  相似文献   

3.
The amount and spatial distribution of aboveground forest biomass (AGB) are required inputs to forest carbon budgets and ecosystem productivity models. Satellite remote sensing offers distinct advantages for large area and multi-temporal applications, however, conventional empirical methods for estimating forest canopy structure and AGB can be difficult in areas of high relief and variable terrain. This paper introduces a new method for obtaining AGB from forest structure estimates using a physically-based canopy reflectance (CR) model inversion approach. A geometric-optical CR model was run in multiple forward mode (MFM) using SPOT-5 imagery to derive forest structure and biomass at Kananaskis, Alberta in the Canadian Rocky Mountains. The approach first estimates tree crown dimensions and stem density for satellite image pixels which are then related to tree biomass and AGB using a crown spheroid surface area approach. MFM estimates of AGB were evaluated for 36 deciduous (trembling aspen) and conifer (lodgepole pine) field validation sites and compared against spectral mixture analysis (SMA) and normalised difference vegetation index (NDVI) biomass predictions from atmospherically and topographically corrected (SCS+C) imagery. MFM provided the lowest error for all validation plots of 31.7 tonnes/hectare (t/ha) versus SMA (32.6 t/ha error) and NDVI (34.7 t/ha) as well as for conifer plots (MFM: 23.0 t/ha; SMA 27.9 t/ha; NDVI 29.7 t/ha) but had higher error than SMA and NDVI for deciduous plots (by 4.5 t/ha and 2.1 t/ha, respectively). The MFM approach was considerably more stable over the full range of biomass values (67 to 243 t/ha) measured in the field. Field plots with biomass > 1 standard deviation from the field mean (over 30% of plots) had biomass estimation errors of 37.9 t/ha using MFM compared with 65.5 t/ha and 67.5 t/ha error from SMA and NDVI, respectively. In addition to providing more accurate overall results and greater stability over the range of biomass values, the MFM approach also provides a suite of other biophysical structural outputs such as density, crown dimensions, LAI, height and sub-pixel scale fractions. Its explicit physical-basis and minimal ground data requirements are also more appropriate for larger area, multi-scene, multi-date applications with variable scene geometry and in high relief terrain. MFM thus warrants consideration for applications in mountainous and other, less complex terrain for purposes such as forest inventory updates, ecological modeling and terrestrial biomass and carbon monitoring studies.  相似文献   

4.
This study was part of an interdisciplinary research project on soil carbon and phytomass dynamics of boreal and arctic permafrost landscapes. The 45 ha study area was a catchment located in the forest tundra in northern Siberia, approximately 100 km north of the Arctic Circle.The objective of this study was to estimate aboveground carbon (AGC) and assess and model its spatial variability. We combined multi-spectral high resolution remote sensing imagery and sample based field inventory data by means of the k-nearest neighbor (k-NN) technique and linear regression.Field data was collected by stratified systematic sampling in August 2006 with a total sample size of n = 31 circular nested sample plots of 154 m2 for trees and shrubs and 1 m2 for ground vegetation. Destructive biomass samples were taken on a sub-sample for fresh weight and moisture content. Species-specific allometric biomass models were constructed to predict dry biomass from diameter at breast height (dbh) for trees and from elliptic projection areas for shrubs.Quickbird data (standard imagery product), acquired shortly before the field campaign and archived ASTER data (Level-1B product) of 2001 were geo-referenced, converted to calibrated radiances at sensor and used as carrier data. Spectral information of the pixels which were located in the inventory plots were extracted and analyzed as reference set. Stepwise multiple linear regression was applied to identify suitable predictors from the set of variables of the original satellite bands, vegetation indices and texture metrics. To produce thematic carbon maps, carbon values were predicted for all pixels of the investigated satellite scenes. For this prediction, we compared the kNN distance-weighted classifier and multiple linear regression with respect to their predictions.The estimated mean value of aboveground carbon from stratified sampling in the field is 15.3 t/ha (standard error SE = 1.50 t/ha, SE% = 9.8%). Zonal prediction from the k-NN method for the Quickbird image as carrier is 14.7 t/ha with a root mean square error RMSE = 6.42 t/ha, RMSEr = 44%) resulting from leave-one-out cross-validation. The k-NN-approach allows mapping and analysis of the spatial variability of AGC. The results show high spatial variability with AGC predictions ranging from 4.3 t/ha to 28.8 t/ha, reflecting the highly heterogeneous conditions in those permafrost-influenced landscapes. The means and totals of linear regression and k-NN predictions revealed only small differences but some regional distinctions were recognized in the maps.  相似文献   

5.
Testing LiDAR models of fractional cover across multiple forest ecozones   总被引:1,自引:0,他引:1  
Four LiDAR-based models of canopy fractional cover (FCLiDAR) have been tested against hemispherical photography fractional cover measurements (FCHP) and compared across five ecozones, eight forest species and multiple LiDAR survey configurations. The four models compared are based on: i) a canopy-to-total first returns ratio (FCLiDAR(FR)) method; ii) a canopy-to-total returns ratio (FCLiDAR(RR)); iii) an intensity return ratio (FCLiDAR(IR)); and iv) a Beer's Law modified (two-way transmission loss) intensity return ratio (FCLiDAR(BL)). It is found that for the entire dataset, the FCLiDAR(RR) model demonstrates the lowest overall predictive capability of overhead FC (annulus rings 1-4) (r2 = 0.70), with a slight improvement for the FCLiDAR(FR) model (r2 = 0.74). The intensity-based FCLiDAR(IR) model displays the best results (r2 = 0.78). However, the FCLiDAR(BL) model is considered generally more useful (r2 = 0.75) because the associated line of best fit passes through the origin, has a slope near unity and produces a mean estimate of FCHP within 5%. Therefore, FCLiDAR(BL) requires the least calibration across a broad range of forest cover types. The FCLiDAR(FR) and FCLiDAR(RR) models, on the other hand, were found to be sensitive to variations in both canopy height and sensor pulse repetition frequency (or pulse power); i.e. changing the repetition frequency led to a systematic shift of up to 11% in the mean FCLiDAR(RR) estimates while it had no effect on the intensity-based FCLiDAR(IR) or FCLiDAR(BL) models. While the intensity-based models were generally more robust, all four models displayed at least some sensitivity to variations in canopy structural class, suggesting that some calibration of FCLiDAR might be necessary regardless of the model used. Short (< 2 m tall) or open canopy forest plots posed the greatest challenge to accurate FC estimation regardless of the model used.  相似文献   

6.
Conservation of biodiversity requires information at many spatial scales in order to detect and preserve habitat for many species, often simultaneously. Vegetation structure information is particularly important for avian habitat models and has largely been unavailable for large areas at the desired resolution. Airborne LiDAR, with its combination of relatively broad coverage and fine resolution provides existing new opportunities to map vegetation structure and hence avian habitat. Our goal was to model the richness of forest songbirds using forest structure information obtained from LiDAR data. In deciduous forests of southern Wisconsin, USA, we used discrete-return airborne LiDAR to derive forest structure metrics related to the height and density of vegetation returns, as well as composite variables that captured major forest structural elements. We conducted point counts to determine total forest songbird richness and the richness of foraging, nesting, and forest edge-related habitat guilds. A suite of 35 LiDAR variables were used to model bird species richness using best-subsets regression and we used hierarchical partitioning analysis to quantify the explanatory power of each variable in the multivariate models. Songbird species richness was correlated most strongly with LiDAR variables related to canopy and midstory height and midstory density (R2 = 0.204, p < 0.001). Richness of species that nest in the midstory was best explained by canopy height variables (R2 = 0.197, p < 0.001). Species that forage on the ground responded to mean canopy height and the height of the lower canopy (R2 = 0.149, p < 0.005) while aerial foragers had higher richness where the canopy was tall and dense and the midstory more sparse (R2 = 0.216, p < 0.001). Richness of edge-preferring species was greater where there were fewer vegetation returns but higher density in the understory (R2 = 0.153, p < 0.005). Forest interior specialists responded positively to a tall canopy, developed midstory, and a higher proportion of vegetation returns (R2 = 0.195, p < 0.001). LiDAR forest structure metrics explained between 15 and 20% of the variability in richness within deciduous forest songbird communities. This variability was associated with vertical structure alone and shows how LiDAR can provide a source of complementary predictive data that can be incorporated in models of wildlife habitat associations across broad geographical extents.  相似文献   

7.
Estimating spruce and pine biomass with interferometric X-band SAR   总被引:1,自引:0,他引:1  
The primary aim of this study was to investigate the suitability of interferometric X-band SAR (InSAR) for inventory of boreal forest biomass. We investigated the relationship between SRTM X-band InSAR height and above-ground biomass in a study area in southern Norway. We generated biomass reference data for each SRTM pixel from a field inventory in combination with airborne laser scanning (ALS). One set of forest inventory plots served for calibrating ALS based biomass models, and another set of field plots was used to validate these models. The biomass values obtained in this way ranged up to 250 t/ha at the stand level. The relationship between biomass and InSAR height was linear, no apparent saturation effect was present, and the accuracy was high (RMSE = 19%). The relationship differed between Norway spruce and Scots pine, where an increase in InSAR height of 1 m corresponded to an increase in biomass of 9.9 and 7.0 t/ha, respectively. Using a high-quality terrain model from ALS enabled biomass to be estimated with a higher accuracy as compared to using a terrain model from topographic maps. Interferometric X-band SAR appears to be a promising method for forest biomass monitoring.  相似文献   

8.
Biomass fractions (total aboveground, branches and foliage) were estimated from a small footprint discrete-return LiDAR system in an unmanaged Mediterranean forest in central Spain. Several biomass estimation models based on LiDAR height, intensity or height combined with intensity data were explored. Raw intensity data were normalized to a standard range in order to remove the range dependence of the intensity signal. In general terms, intensity-based models provided more accurate predictions of the biomass fractions. Height models selected were mainly based on a percentile of the height distribution. Intensity models selected included variables that consider the percentage of the intensity accumulated at different height percentiles, which implicitly take into account the height distribution. The general models derived considering all species together were based on height combined with intensity data. These models yielded R2 values greater than 0.58 for the different biomass fractions considered and RMSE values of 28.89, 18.28 and 1.51 Mg ha1 for aboveground, branch and foliage biomass, respectively. Results greatly improved for species-specific models using the main species present in each plot, with R2 values greater than 0.85, 0.70 and 0.90 for black pine, Spanish juniper and Holm oak, respectively, and with lower RMSE for the biomass fractions. Reductions in LiDAR point density had only a small effect on the results obtained, except for those models based on a variation of the Canopy Reflection Sum, which was weighted by the mean point density. Based on the species-specific equations derived, Holm oak dominated plots showed the highest average carbon contained by aboveground biomass and branch biomass 44.66 and 31.42 Mg ha− 1 respectively, while for foliage biomass carbon, Spanish juniper showed the highest average value (3.04 Mg ha− 1).  相似文献   

9.
Improved forest biomass estimates using ALOS AVNIR-2 texture indices   总被引:3,自引:0,他引:3  
Optical remote sensing is still one of the most attractive choices for obtaining biomass information, as new sensors are available with fine spatial and spectral resolutions. Better biomass estimates may be possible if suitable processing techniques for these sensors can be demonstrated. This research investigates the potential of high resolution optical data from the ALOS AVNIR-2 sensor for biomass estimation in a mountainous, subtropical forested region using four different types of image processing techniques including i) spectral reflectance and simple spectral band ratio, ii) commonly used vegetation indices, iii) texture parameters and iv) ratio of texture parameters. Simple linear and stepwise multiple regression models were developed between biomass data from 50 field plots, and image parameters derived from these techniques.Results indicate that spectral reflectance, the simple band ratio, and commonly used vegetation indices have relatively low potential for biomass estimation, as only about 58% of the variability in the field data was explained by the model (adjusted r2 = 0.58 and RMSE = 64 t/ha). However, the texture parameters of spectral bands were found to be effective for biomass estimation with an explained variability of ca. 76% (adjusted r2 = 0.76 and RMSE = 46 t/ha). The result was further improved to adjusted r2 = 0.88 (RMSE = 32 t/ha) using the simple ratio of texture parameters. The results suggest that the performance of biomass estimation can be improved significantly using the texture parameters of high resolution optical data, and further improvement can be obtained using the ratio of texture parameters, as this combines the advantages of both texture and ratio.  相似文献   

10.
We calibrated upward sensing profiling and downward sensing scanning LiDAR systems to estimates of canopy fuel loading developed from field plots and allometric equations, and then used the LiDAR datasets to predict canopy bulk density (CBD) and crown fuel weight (CFW) in wildfire prone stands in the New Jersey Pinelands. LiDAR-derived height profiles were also generated in 1-m layers, and regressed on CBD estimates calculated for 1-m layers from field plots to predict three-dimensional canopy fuel loading. We then produced maps of canopy fuel metrics for three 9 km2 forested areas in the Pinelands.Correlations for standard LiDAR-derived parameters between the two LiDAR systems were all highly significant, with correlation coefficients ranging between 0.82 and 0.98. Stepwise linear regression models developed from the profiling LiDAR data predicted maximum CBD and CFW (r2 = 0.94 and 0.92) better than those developed from the scanning LiDAR data (r2 = 0.83 and 0.71, respectively). A single regression for the prediction of CBD at all canopy layers had r2 values of 0.93 and 0.82 for the profiling and scanning datasets, respectively. Individual bin regressions for predicting CBD at each canopy height layer were also highly significant at most canopy heights, with r2 values for each layer ranging between 0.36 and 0.89, and 0.44 and 0.99 for the profiling and scanning datasets, respectively. Relationships were poorest mid-canopy, where highest average values and highest variability in fuel loading occurred. Fit of data to Gaussian distributions of canopy height profiles facilitated a simpler expression of these parameters for analysis and mapping purposes, with overall r2 values of 0.86 and 0.92 for the profiling and scanning LiDAR datasets, respectively. Our research demonstrates that LiDAR data can be used to generate accurate, three-dimensional representations of canopy structure and fuel loading at high spatial resolution by linking 1-m return height profiles to biometric estimates from field plots.  相似文献   

11.
Airborne scanning LiDAR is a spatial technology increasingly used for forestry and environmental applications. However, the accuracy and coverage of LiDAR observations is highly dependent on both the extrinsic specifications of the LiDAR survey as well as the intrinsic effects such as the underlying forest structure. Extrinsic parameters which are set as part of the LiDAR survey include platform altitude, scan angle (half max. angle off nadir), and beam cross sectional diameter at the reflecting surface (referred to as footprint size). In this paper we investigate the effect of a number of these extrinsic parameters, including three different platform altitudes (1000, 2000, and 3000 m), two scan angles at 1000 m (10° and 15° half max. angle off nadir), and three footprint sizes (0.2, 0.4, and 0.6 m). The comparison was undertaken in eucalypt forests at three sites, varying in vegetation structure and topography within the Wedding Bells State Forest, Coffs Harbour, Australia. Results at the plot scale (40 × 90 m areas) indicate that tree heights computed from the 1000 m LiDAR data set (10° half max. angle off nadir) are well correlated with maximum plot heights (difference < 3 m) and field measured canopy volume (r2 > 0.75, p < 0.001). Using normalised canopy height profiles (CHP) derived for sites, from data recorded at each altitude, we observed no significant difference between the relative distribution of LiDAR returns, indicating that platform altitude and footprint size have not had a major influence on CHP estimation. Interestingly, comparisons of first and last returns for individual pulses at increasing altitudes identified progressively fewer discrete first/last pulse combinations with more than 70% of pulses recorded as a single return at the highest altitude (3000 m). A possible hypothesis is that greater platform altitude and footprint size reduces the intensity of laser beam incident on a given surface area thus decreasing the probability of recording a last return above the noise threshold. Furthermore, tree scale analysis found a positive relationship between platform altitude and the underestimation of crown area and crown volume. The implications of this work for forest management are: (i) platform altitudes as high as 3000 m can be used to quantify the vertical distribution of phyto-elements, (ii) higher platform altitudes record a lower proportion of first/last return combinations that will further reduce the number of points available for forest structural assessment and development of digital elevation models, and (iii) for discrete LiDAR data, increasing platform altitude will record a lower frequency of returns per crown, resulting in larger underestimates of individual tree crown area and volume if standard algorithms are applied.  相似文献   

12.
Regression has been widely applied in Light Detection And Ranging (LiDAR) remote sensing to spatially extend predictions of total aboveground biomass (TAGB) and other biophysical properties over large forested areas. Sample (field) plot size has long been considered a key sampling design parameter and focal point for optimization in forest surveys, because of its impact on sampling effort and the estimation accuracy of forest inventory attributes. In this study, we demonstrate how plot size and co-registration error interact to influence the estimation of LiDAR canopy height and density metrics, regression model coefficients, and the prediction accuracy of least-squares estimators of TAGB. We made use of simulated forest canopies and synthetic LiDAR point clouds, so that we could maintain strict control over the spatial scale and complexity of forest scenes, as well as the magnitude and type of planimetric error inherent in ground-reference and LiDAR datasets. Our results showed that predictions of TAGB improved markedly as plot size increased from 314 (10 m radius) to 1964 m2 (25 m radius). The co-registration error (spatial overlap) between ground-reference and LiDAR samples negatively impacted the estimation of LiDAR metrics, regression model fit, and the prediction accuracy of TAGB. We found that larger plots maintained a higher degree of spatial overlap between ground-reference and LiDAR datasets for any given GPS error, and were therefore more resilient to the ill effects of co-registration error compared to small plots. The impact of co-registration error was more pronounced in tall, spatially heterogeneous stands than short, homogeneous stands. We identify and briefly discuss three possible ways that LiDAR data could be used to optimize plot size, sample selection, and the deployment of GPS resources in forest biomass surveys.  相似文献   

13.
The retrieval of tree and forest structural attributes from Light Detection and Ranging (LiDAR) data has focused largely on utilising canopy height models, but these have proved only partially useful for mapping and attributing stems in complex, multi-layered forests. As a complementary approach, this paper presents a new index, termed the Height-Scaled Crown Openness Index (HSCOI), which provides a quantitative measure of the relative penetration of LiDAR pulses into the canopy. The HSCOI was developed from small footprint discrete return LiDAR data acquired over mixed species woodlands and open forests near Injune, Queensland, Australia, and allowed individual trees to be located (including those in the sub-canopy) and attributed with height using relationships (r2 = 0.81, RMSE = 1.85 m, n = 115; 4 outliers removed) established with field data. A threshold contour of the HSCOI surface that encompassed ∼ 90% of LiDAR vegetation returns also facilitated mapping of forest areas, delineation of tree crowns and clusters, and estimation of canopy cover. At a stand level, tree density compared well with field measurements (r2 = 0.82, RMSE = 133 stems ha− 1, n = 30), with the most consistent results observed for stem densities ≤ 700 stems ha− 1. By combining information extracted from both the HSCOI and the canopy height model, predominant stem height (r2 = 0.91, RMSE = 0.77 m, n = 30), crown cover (r2 = 0.78, RMSE = 9.25%, n = 30), and Foliage & Branch Projective Cover (FBPC; r2 = 0.89, RMSE = 5.49%, n = 30) were estimated to levels sufficient for inventory of woodland and open forest structural types. When the approach was applied to forests in north east Victoria, stem density and crown cover were reliably estimated for forests with a structure similar to those observed in Queensland, but less so for forests of greater height and canopy closure.  相似文献   

14.
This paper presents a method to monitor the dynamics of herbaceous vegetation in the Sahel. The approach is based on the assimilation of Normalized Difference Vegetation Index (NDVI) data acquired by the VEGETATION instrument on board SPOT 4/5 into a simple sahelian vegetation dynamics model. The study region is located in the Gourma region of Mali. The vegetation dynamics model is coupled with a radiative transfer model (the SAIL model). First, it is checked that the coupled models allow for a realistic simulation of the seasonal and interannual variability of NDVI over three sampling sites from 1999 to 2004. The data assimilation scheme relies on a parameter identification technique based on an Evolution Strategies algorithm. The simulated above-ground herbage mass resulting from NDVI assimilation is then compared to ground measurements performed over 13 study sites during the period 1999-2004. The assimilation scheme performs well with 404 kg DM/ha of average error (n = 126 points) and a correlation coefficient of r = 0.80 (to be compared to the 463 kg DM/ha and r = 0.60 of the model performance without data assimilation). Finally, the sensitivity of the herbage mass model estimates to the quality of the meteorological forcing (rainfall and net radiation) is analyzed thanks to a stochastic approach.  相似文献   

15.
Characterizing forest structure is an important part of any comprehensive biodiversity assessment. However, current methods for measuring structural complexity require a laborious process that involves many logistically expensive point based measurements. An automated or semi-automated method would be ideal. In this study, the utility of airborne laser scanning (LiDAR; Light Detection and Ranging) for characterizing the ecological structure of a forest landscape is examined. The innovation of this paper is to use different laser pulse return properties from a full waveform LiDAR to characterize forest ecological structure. First the LiDAR dataset is stratified into four vertical layers: ground, low vegetation (0-1 m from the ground), medium vegetation (1-5 m from the ground) and high vegetation (> 5 m). Subsequently the “Type” of LiDAR return is analysed: Type 1 (singular returns); Type 2 (first of many returns); Type 3 (intermediate returns); and Type 4 (last of many returns). A forest characterization scheme derived from LiDAR point clouds is proposed. A validation of the scheme is then presented using a network of field sites that recorded commonly used metrics of biodiversity. The proposed forest characterization categories allow for quantification of gaps (above bare ground, low vegetation and medium vegetation), canopy cover and its vertical density as well as the presence of various canopy strata (low, medium and high). Regression analysis showed that LiDAR derived variables were good predictors of field recorded variables (R2 = 0.82, P < 0.05 between LiDAR derived presence of low vegetation and field derived LAI for low vegetation). The proposed scheme clearly shows the potential of full waveform LiDAR to provide information on the complexity of habitat structure.  相似文献   

16.
The lack of maps depicting forest three-dimensional structure, particularly as pertaining to snags and understory shrub species distribution, is a major limitation for managing wildlife habitat in forests. Developing new techniques to remotely map snags and understory shrubs is therefore an important need. To address this, we first evaluated the use of LiDAR data for mapping the presence/absence of understory shrub species and different snag diameter classes important for birds (i.e. ≥ 15 cm, ≥ 25 cm and ≥ 30 cm) in a 30,000 ha mixed-conifer forest in Northern Idaho (USA). We used forest inventory plots, LiDAR-derived metrics, and the Random Forest algorithm to achieve classification accuracies of 83% for the understory shrubs and 86% to 88% for the different snag diameter classes. Second, we evaluated the use of LiDAR data for mapping wildlife habitat suitability using four avian species (one flycatcher and three woodpeckers) as case studies. For this, we integrated LiDAR-derived products of forest structure with available models of habitat suitability to derive a variety of species-habitat associations (and therefore habitat suitability patterns) across the study area. We found that the value of LiDAR resided in the ability to quantify 1) ecological variables that are known to influence the distribution of understory vegetation and snags, such as canopy cover, topography, and forest succession, and 2) direct structural metrics that indicate or suggest the presence of shrubs and snags, such as the percent of vegetation returns in the lower strata of the canopy (for the shrubs) and the vertical heterogeneity of the forest canopy (for the snags). When applied to wildlife habitat assessment, these new LiDAR-based maps refined habitat predictions in ways not previously attainable using other remote sensing technologies. This study highlights new value of LiDAR in characterizing key forest structure components important for wildlife, and warrants further applications to other forested environments and wildlife species.  相似文献   

17.
In this paper, we explored fusion of structural metrics from the Laser Vegetation Imaging Sensor (LVIS) and spectral characteristics from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) for biomass estimation in the Sierra Nevada. In addition, we combined the two sensors to map species-specific biomass and stress at landscape scale. Multiple endmember spectral mixture analysis (MESMA) was used to classify vegetation from AVIRIS images and obtain sub-pixel fractions of green vegetation, non-photosynthetic vegetation, soil, and shade. LVIS metrics, AVIRIS spectral indices, and MESMA fractions were compared with field measures of biomass using linear and stepwise regressions at stand (1 ha) level. AVIRIS metrics such as water band indices and shade fractions showed strong correlation with LVIS canopy height (r2 = 0.69, RMSE = 5.2 m) and explained around 60% variability in biomass. LVIS variables were found to be consistently good predictors of total and species specific biomass (r2 = 0.77, RMSE = 70.12 Mg/ha). Prediction by LVIS after species stratification of field data reduced errors by 12% (r2 = 0.84, RMSE = 58.78 Mg/ha) over using LVIS metrics alone. Species-specific biomass maps and associated errors created from fusion were different from those produced without fusion, particularly for hardwoods and pines, although mean biomass differences between the two techniques were not statistically significant. A combined analysis of spatial maps from LVIS and AVIRIS showed increased water and chlorophyll stress in several high biomass stands in the study area. This study provides further evidence that lidar is better suited for biomass estimation, per se, while the best use of hyperspectral data may be to refine biomass predictions through a priori species stratification, while also providing information on canopy state, such as stress. Together, the two sensors have many potential applications in carbon dynamics, ecological and habitat studies.  相似文献   

18.
Tropical forests are an important component of the global carbon balance, yet there is considerable uncertainty in estimates of their carbon stocks and fluxes, which are typically estimated through analysis of aboveground biomass in field plots. Remote sensing technology is critical for assessing fine-scale spatial variability of tropical forest biomass over broad spatial extents. The goal of our study was to evaluate relatively new technology, small-footprint, discrete-return lidar and hyperspectral sensors, for the estimation of aboveground biomass in a Costa Rican tropical rain forest landscape. We derived a suite of predictive metrics for field plots: lidar metrics were calculated from plot vertical height profiles and hyperspectral metrics included fraction of spectral mixing endmembers and narrowband indices that respond to photosynthetic vegetation, structure, senescence, health and water and lignin content. We used single- and two-variable linear regression analyses to relate lidar and hyperspectral metrics to aboveground biomass of plantation, managed parkland and old-growth forest plots. The best model using all 83 biomass plots included two lidar metrics, plot-level mean height and maximum height, with an r2 of 0.90 and root-mean-square error (RMSE) of 38.3 Mg/ha. When the analysis was constrained to plantation plots, which had the most accurate field data, the r2 of the model increased to 0.96, with RMSE of 10.8 Mg/ha (n = 32). Hyperspectral metrics provided lower accuracy in estimating biomass than lidar metrics, and models with a single lidar and hyperspectral metric were no better than the best model using two lidar metrics. These results should be viewed as an initial assessment of using these combined sensors to estimate tropical forest biomass; hyperspectral data were reduced to nine indices and three spectral mixture fractions, lidar data were limited to first-return canopy height, sensors were flown only once at different seasons, and we explored only linear regression for modeling. However, this study does support conclusions from studies at this and other climate zones that lidar is a premier instrument for mapping biomass (i.e., carbon stocks) across broad spatial scales.  相似文献   

19.
Quantifying aboveground biomass in forest ecosystems is required for carbon stock estimation, aspects of forest management, and further developing a capacity for monitoring carbon stocks over time. Airborne Light Detection And Ranging (LiDAR) systems, of all remote sensing technologies, have been demonstrated to yield the most accurate estimates of aboveground biomass for forested areas over a wide range of biomass values. However, these systems are limited by considerations including large data volumes and high costs. Within the constraints imposed by the nature of the satellite mission, the GeoScience Laser Altimeter System (GLAS) aboard ICESat has provided data conferring information regarding forest vertical structure for large areas at a low end user cost. GLAS data have been demonstrated to accurately estimate forest height and aboveground biomass especially well in topographically smooth areas with homogeneous forested conditions. However in areas with dense forests, high relief, or heterogeneous vegetation cover, GLAS waveforms are more complex and difficult to consistently characterize. We use airborne discrete return LiDAR data to simulate GLAS waveforms and to subsequently deconstruct coregistered GLAS waveforms into vegetation and ground returns. A series of waveform metrics was calculated and compared to topography and vegetation information gleaned from the airborne data. A model to estimate maximum relief directly from waveform metrics was developed with an R2 of 0.76 (n = 110), and used for the classification of the maximum relief of the areas sensed by GLAS. Discriminant analysis was also conducted as an alternative classification technique. A model was also developed estimating forest canopy height from waveform metrics for all of the data (R2 = 0.81, n = 110) and for the three separate relief classes; maximum relief 0-7 m (R2 = 0.83, n = 44), maximum relief 7-15 m (R2 = 0.88, n = 41) and maximum relief > 15 m (R2 = 0.75, n = 25). The moderate relief class model yielded better predictions of forest height than the low relief class model which is attributed to the increasing variability of waveform metrics with terrain relief. The moderate relief class model also yielded better predictions than the high relief class model because of the mixing of vegetation and terrain signals in waveforms from high relief footprints. This research demonstrates that terrain can be accurately modeled directly from GLAS waveforms enabling the inclusion of terrain relief, on a waveform specific basis, as supplemental model input to improve estimates of canopy height.  相似文献   

20.
Airborne scanning LiDAR systems are used to predict a range of forest attributes. However, the accuracy with which this can be achieved is highly dependent on the sensor configuration and the structural characteristics of the forest examined. As a result, there is a need to understand laser light interactions with forest canopies so that LiDAR sensor configurations can be optimised to assess particular forest types. Such optimisation will not only ensure the targeted forest attributes can be accurately and consistently quantified, but may also minimise the cost of data acquisition and indicate when a survey configuration will not deliver information needs.In this paper, we detail the development and application of a model to simulate laser interactions within forested environments. The developed model, known as the LiDAR Interception and Tree Environment (LITE) model, utilises a range of structural configurations to simulate trees with variable heights, crown dimensions and foliage clumping. We developed and validated the LITE model using field data obtained from three forested sites covering a range of structural classes. Model simulations were then compared to coincident airborne LiDAR data collected over the same sites. Results indicate that the LITE model can be used to produce comparable estimates of maximum height of trees within plots (differences < 2.42 m), mean heights of first return data (differences < 2.27 m), and canopy height percentiles (r2 = 0.94, p < 0.001) when compared to airborne LiDAR data. In addition, the distribution of airborne LiDAR hits through the canopy profile was closely matched by model predictions across the range of sites. Importantly, this demonstrates that the structural differences between forest stands can be characterised by LITE. Models that are capable of interpreting the response of small-footprint LiDAR waveforms can facilitate algorithm development, the generation of corrections for actual LiDAR data, and the optimisation of sensor configurations for differing forest types, benefiting a range of experimental and commercial LiDAR applications. As a result, we also performed a scenario analysis to demonstrate how differences in forest structure, terrain, and sensor configuration can influence the interception of LiDAR beams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号