首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The Louisiana coast is subjected to hurricane impacts including flooding of human settlements, river channels and coastal marshes, and salt water intrusion. Information on the extent of flooding is often required quickly for emergency relief, repairs of infrastructure, and production of flood risk maps. This study investigates the feasibility of using Radarsat‐1 SAR imagery to detect flooded areas in coastal Louisiana after Hurricane Lili, October 2002. Arithmetic differencing and multi‐temporal enhancement techniques were employed to detect flooding and to investigate relationships between backscatter and water level changes. Strong positive correlations (R 2 = 0.7–0.94) were observed between water level and SAR backscatter within marsh areas proximate to Atchafalaya Bay. Although variations in elevation and vegetation type did influence and complicate the radar signature at individual sites, multi‐date differences in backscatter largely reflected the patterns of flooding within large marsh areas. Preliminary analyses show that SAR imagery was not useful in mapping urban flooding in New Orleans after Hurricane Katrina's landfall on 29 August 2005.  相似文献   

2.
以扎龙自然保护区湿地为例,结合ENVISat ASAR多极化(HH/HV)雷达影像与传统的光学影像Landsat TM (band1~5,7),分析雷达影像后向散射系数与Landsat TM影像不同波段反射率在淹水植被、非淹水植被、明水面和裸土不同地表覆被类型的差异。选择训练样本,采用分类回归树(Classification and Regression Tree,CART)模型,分别对两种影像进行分类,可视化表达湿地植被淹水范围空间分布情况。基于实测的植被冠层下淹水范围与非淹水范围样本点对两种数据源的分类结果进行精度验证。结果表明:HH/HV极化影像中,植被覆盖下水体的后向散射系数与其他地表覆被类型有明显区别,分类结果总精度为79.49%,Kappa系数为0.70,湿地植被淹水范围提取精度较高。而TM影像分类结果中,由于部分地区植被覆盖水体,淹水植被分类误差较高。将雷达影像引入沼泽湿地研究,提高了植被淹水范围提取效果,为有效分析湿地生态水文过程提供基础,对湿地水资源合理利用及生物多样性保护具有重要意义。  相似文献   

3.
During the Global Rain Forest Mapping (GRFM) project, the JERS-1 SAR (Synthetic Aperture Radar) satellite acquired wall-to-wall image coverage of the humid tropical forests of the world. The rationale for the project was to demonstrate the application of spaceborne L-band radar in tropical forest studies. In particular, the use of orbital radar data for mapping land cover types, estimating the area of floodplains, and monitoring deforestation and forest regeneration were of primary importance. In this paper we examine the information content of the JERS-1 SAR data for mapping land cover types in the Amazon basin. More than 1500 high-resolution (12.5 m pixel spacing) images acquired during the low flood period of the Amazon river were resampled to 100 m resolution and mosaicked into a seamless image of about 8 million km2, including the entire Amazon basin. This image was used in a classifier to generate a 1 km resolution land cover map. The inputs to the classifier were 1 km resolution mean backscatter and seven first-order texture measures derived from the 100 m data by using a 10 x 10 independent sampling window. The classification approach included two interdependent stages. First, a supervised maximum a posteriori Baysian approach classified the mean backscatter image into five general cover categories: terra firme forest (including secondary forest), savanna, inundated vegetation, open deforested areas and open water. A hierarchical decision rule based on texture measures was then applied to attempt further discrimination of known subcategories of vegetation types based on taxonomic information and woody biomass levels. True distributions of the general categories were identified from the RADAMBRASIL project vegetation maps and several field studies. Training and validation test sites were chosen from the JERS-1 image by consulting the RADAM vegetation maps. After several iterations and combining land cover types, 14 vegetation classes were successfully separated at the 1 km scale. The accuracy of the classification methodology was estimated to be 78% when using the validation sites. The results were also verified by comparison with the RADAM- and AVHRR-based 1 km resolution land cover maps.  相似文献   

4.

In this paper, a multiscale texture-based classifier for mapping tropical forest land cover types is discussed. The classifier was implemented using the Japanese Earth Remote Sensing Satellite (JERS-1) 100 m resolution radar data acquired over the Amazon Rainforest as part of the Global Rainforest Mapping (GRFM) Project. Demonstrated here is the use of the information content present in different texture measurements at different scales to separate three categories of land cover types: forest from nonforest, terre firme from floodplain vegetation, and grassland from woodland savanna. Various combinations of first-order image statistics known as texture measures were used at different scales as feature dimensions to aid the class discrimination. Eight of the most common first-order texture measures found in the literature were used. The best combination of texture measures at each scale were determined by employing a class separability test using the Bhattachuryya distance. The results were then used as input images into a supervised multiscale maximum likelihood estimation classifier. The classified maps were validated against independent test sites, and by comparison with a Landsat Thematic Mapper (TM) classification. It was found that JERS-1 backscatter and texture measures can discriminate forest from nonforest types with very high accuracy (above 90%). Old secondary forest or regrowth areas were often mixed with forest. Radar backscatter alone was able to separate terre firme and floodplain vegetation. However, texture measures were important in separating open from dense floodplain vegetation. Similarly, the backscatter sensitivity to low biomass values was instrumental in separating woodland from grassland savanna. Texture had a lesser role in separating these two vegetation types but was important to separate the woodland savanna from dense evergreen forest and secondary forests.  相似文献   

5.
Wetland extent was mapped for the central Amazon region, using mosaicked L-band synthetic aperture radar (SAR) imagery acquired by the Japanese Earth Resources Satellite-1. For the wetland portion of the 18×8° study area, dual-season radar mosaics were used to map inundation extent and vegetation under both low-water and high-water conditions at 100-m resolution, producing the first high-resolution wetlands map for the region. Thematic accuracy of the mapping was assessed using high-resolution digital videography acquired during two aerial surveys of the Brazilian Amazon. A polygon-based segmentation and clustering was used to delineate wetland extent with an accuracy of 95%. A pixel-based classifier was used to map wetland vegetation and flooding state based on backscattering coefficients of two-season class combinations. Producer's accuracy for flooded and nonflooded forest classes ranged from 78% to 91%, with lower accuracy (63-65%) for flooded herbaceous vegetation. Seventeen percent of the study quadrat was occupied by wetlands, which were 96% inundated at high water and 26% inundated at low water. Flooded forest constituted nearly 70% of the entire wetland area at high water, but there are large regional variations in the proportions of wetland habitats. The SAR-based mapping provides a basis for improved estimates of the contribution of wetlands to biogeochemical and hydrological processes in the Amazon basin, a key question in the Large-Scale Biosphere-Atmosphere Experiment in Amazônia.  相似文献   

6.
This article presents for the first time the combination of dual-polarimetric C-band Sentinel-1 synthetic aperture radar (SAR) data and quad-polarimetric L-band ALOS-2/PALSAR-2 imagery for mapping of flooded areas with a special focus on flooded vegetation. L-band SAR data is well suited for mapping of flooded vegetation, while C-band enables an accurate extraction open water areas. Polarimetric decomposition-based unsupervised Wishart classification is combined with object-based post-classification refinement and the integration of spatial contextual information and global auxiliary data. In eight different scenarios, focusing on single datasets or fusion of classification results of several ones, respectively, different polarimetric decomposition and classification principles, including the entropy/anisotropy/alpha and the Freeman–Durden–Wishart classification, were investigated. The helix scattering component of the Yamaguchi decomposition, derived from ALOS-2 imagery, showed high suitability to refine the Sentinel-1-based detection of flooded vegetation. A test site at the Evros River (Greek/Turkish border region) was chosen, which was affected by a flooding event that occurred in spring 2015. The validation was based on high spatial resolution optical WorldView-2 imagery acquired with short temporal delay to the SAR data.  相似文献   

7.
Doñana National Park wetlands, in South West Spain, undergo yearly cycles of inundation and drying out. During the hydrological year 2006-2007, 43 ASAR/Envisat images of Doñana, mostly in HH and VV polarizations, were acquired with the aim to monitor the flood extent evolution during an entire flooding cycle. The images were ordered in the seven ASAR incidence angles, also referred to as swaths, to achieve high observation frequency.In this study, backscattering temporal signatures of the main land cover types in Doñana were obtained for the different incidence angles and polarizations. Plots showing the σ0HH/σ0VV ratio behavior were also produced. The signatures were analyzed with the aid of miscellaneous site data in order to identify the effect of the flooding on the backscattering. Conclusions on the feasibility to discriminate emerged versus flooded land are derived for the different incidence angles, land cover types and phenological stages: intermediate incidence angles (ASAR IS3 and IS4) came up as the most appropriate single swaths to discriminate open water surface from smooth bare soil in the marshland deepest areas. Flood mapping in pasture lands, the most elevated regions, is feasible at steep to mid incidence angles (ASAR IS1 to IS4). In the medium elevation zones, colonized by large helophytes, shallow incidence angles (ASAR IS6 and IS7) enable more accurate flood delineation during the vegetation growing phase.Since Doñana land covers require different observation swaths for flood detection, the composition of different incidence angle images close in time provides the optimum flood mapping. Such composition is possible four times per ASAR 35-day orbit cycle, using pairs of 12-h apart IS1/IS6 and IS2/IS5 Doñana images.  相似文献   

8.
We have analysed interferometric coherence variations in Japanese Earth Resources Satellite (JERS-1) L-band synthetic aperture radar (SAR) data at three central Amazon sites: Lake Balbina, Cabaliana and Solim[otilde]es-Purús. Because radar pulse interactions with inundated vegetation typically follow a double-bounce travel path that returns energy to the antenna, coherence will vary with vegetation type as well as with physical and temporal baselines. Lake Balbina consists mostly of upland forests and inundated trunks of dead, leafless trees whereas Cabaliana and Solim[otilde]es-Purús are dominated by flooded forests. Balbina has higher coherence values than either Cabaliana or Solim[otilde]es-Purús probably because the dead, leafless trees support strong double-bounce returns. The mean coherences of flooded woodland are 0.28 in Balbina and 0.11 in both Cabaliana and Solim[otilde]es-Purús. With increasing temporal baselines, flooded and nonflooded wetland habitats show a steadily decreasing trend in coherence values whereas terra-firme and especially open-water habitats have little variation and remain lower in value. Flooded and nonflooded wetland coherence varies with the season whereas terra-firme and open water do not have similarly evident seasonal variations. For example, flooded habitats in all three study regions show annual peaks in coherence values that are typically 0.02 greater than coherence values from temporal baselines 180 days later, yet open water shows no variation with time. Our findings suggest that, despite overall low coherence values, repeat-pass interferometric coherence of flooded habitats is capable of showing the annual periodicity of the Amazon flood wave.  相似文献   

9.
A methodology is described for identifying and mapping floodplain habitats in a reach of the Amazon mainstream. A linear mixing approach was used to determine the fraction of three pure endmembers. This method was tested for two radiometrically rectified Landsat Thematic Mapper (TM) scenes and the proportions of endmembers were used to identify the following classes: (1) clear/mixed water; (2) turbid water; (3) flooded non-forest; (4) flooded forest; (5) human settlements and (6) aquatic vegetation. The results were compared to visually interpreted Landsat TM images.  相似文献   

10.
Waterline mapping in flooded vegetation from airborne SAR imagery   总被引:1,自引:0,他引:1  
Multifrequency, polarimetric airborne synthetic aperture radar (SAR) survey of a salt marsh on the east coast of the UK is used to investigate the radar backscattering properties of emergent salt marsh vegetation. Two characteristics of flooded vegetation are observed: backscatter enhanced by approximately 1.2 dB at C-band, and 180° HH-VV phase differences at L-band. Both are indicative of a double bounce backscattering mechanism between the horizontal water surface and upright emergent vegetation. The mapping of inundated vegetation is demonstrated for both these signatures, using a statistical active contour model for the C-band enhanced backscatter, and median filtering and thresholding for the L-band HH-VV phase difference. The two techniques are validated against the waterline derived from tidal elevation measured at the time of overpass intersected with an intertidal DEM derived from airborne laser altimetry. The inclusion of flooded vegetation is found to reduce errors in waterline location by a factor of approximately 2, equivalent to a reduction in waterline location error from 120 to 70 m. The DEM is also used to derive SAR waterline heights, which are observed to underpredict the tidal elevation due to the effects of vegetation. The underprediction can be corrected for vegetation effects using canopy height maps derived from the laser altimetry. This third technique is found to improve the systematic error in waterline heights from 20 to 4 cm, but little improvement in random error is evident, chiefly due to significant noise in the vegetation height map.  相似文献   

11.
ABSTRACT

Monitoring the spatial and temporal extents of permanent and temporary bodies of surface water is important for various applications such as water resource management, climate modelling, and biodiversity conservation. Satellite remote sensing is an effective source of information to detect surface water over large areas and document their evolution in time. Recently, the European Space Agency (ESA) launched freely available SAR (Synthetic Aperture Radar) and optical sensors (Sentinel-1 & 2) with high revisiting time and spatial resolution. The objective of this paper is to explore the contribution of multi-temporal and multi-source (passive and active) Sentinel observations for improving the detection and mapping of surface waters by applying decision-level image fusion techniques. The approach is tested over Central Ireland using a time series of 16 Sentinel-1 images and a few Sentinel-2 images for the period 2015–2016. Compared to a mono-date approach, the combination of Sentinel-1 & 2 observations provides better accuracy for mapping permanent surface water. Decision level fusion technique allows mapping temporary surface water (such as flooding) with a high accuracy. It also gives the possibility to monitor their dynamics by providing the probability of occurrence of flooded areas at the pixel level.  相似文献   

12.
Data from 202 forest plots on the Roanoke River floodplain, North Carolina were used to assess the capabilities of multitemporal radar imagery for estimating biophysical characteristics of forested wetlands. The research was designed to determine the potential for using widely available data from the current set of satellite-borne synthetic aperture radar (SAR) sensors to study forests over broad geographic areas and complex environmental gradients. The SAR data set included 11 Radarsat scenes, 2 ERS-1 images, and 1 JERS-1 scene. Empirical analyses were stratified by flood status such that sites were compared only if they exhibited common flooding characteristics. In general, the results indicate that forest properties are more accurately estimated using data from flooded areas, probably because variations in surface conditions are minimized where there is a continuous surface of standing water. Estimations yielded root mean square errors (RMSEs) for validation data around 10 m2/ha for basal area (BA), and less than 3 m for canopy height. The r2 values generally exceeded .65 for BA, with the best predictions coming from sample sites for which both nonflooded and flooded SAR scenes were available. The addition of early spring normalized difference vegetation index (NDVI) values from Landsat Thematic Mapper (Landsat TM) improved model predictions for BA in forests where BA levels were <55 m2/ha. Further analyses indicated a very limited sensitivity of the individual SAR scenes to differences in forest composition, although soil properties in nonflooded areas exerted a weak but nevertheless important influence on backscatter.  相似文献   

13.
Detailed snowpack observations, meteorology, topography and landcover classification were integrated with multi‐temporal SAR data to assess its capability for landscape scale snowmelt mapping at the forest–tundra ecotone. At three sites along an approximately 8° latitudinal gradient in the Fennoscandian mountain range, 16 multi‐temporal spaceborne ERS‐2 synthetic aperture radar (SAR) were used for mapping snowmelt.

Comparison of field measurements and backscatter values demonstrates the difficulty of interpreting observed backscatter response because of complex changes in snow properties on diurnal and seasonal temporal scales. Diurnal and seasonal melt–freeze effects in the snowpack, relative to the timing of ERS‐2 SAR image acquisition, effectively reduce the temporal resolution of such data for snow mapping, even at high latitudes.

The integration of diverse data sources did reveal significant associations between vegetation, topography and snowmelt. Several problems with the application of thresholding for the automatic identification of snowmelt were encountered. These largely related to changes in backscattering from vegetation in the late stages of snowmelt. Due to the impact of environmental heterogeneity in vegetation at the forest–tundra ecotone, we suggest that the potential to map snow cover using single polarization C‐band SAR at the forest–tundra ecotone may be limited to tundra areas.  相似文献   

14.
This study presents a methodology to classify rice cultural types based on water regimes using multi-temporal synthetic aperture radar (SAR) data. The methodology was developed based on the theoretical understanding of radar scattering mechanisms with rice crop canopy, considering crop phenology and variation in water depth in the rice field, emphasizing the sensitivity of SAR to crop geometry and water. The logic used was the characteristic decrease in SAR backscatter that is associated with the puddled or transplanted field due to specular reflection for little exposure of crop, with increase in backscatter as the crop growth progresses due to volume scattering. Besides, the multiple interactions between SAR and vegetation/water also lead to an increase in backscatter as the crop growth progresses. Classification thresholds were established based on the information provided by each pixel in each image, the pixel's typical temporal behaviour due to crop phenology and changing water depth in rice field and their corresponding SAR signature. Based on this logic, the study site (i.e. South 24 Paraganas district, West Bengal) was classified into three major rice cultural types, namely shallow water rice (SWR; 5 cm ≤ water depth ≤ 30 cm), intermediate water rice (IWR; 30 cm ≤ water depth ≤ 50 cm) and deep water rice (DWR; water depth > 50 cm) during the kharif season. These three types represent most of the traditional rice-growing areas of India. The methodology was validated with the field data collected synchronously with the satellite passes. Classification results showed an overall accuracy of 98.5% (95.5% kappa coefficient) compared with a maximum-likelihood classifier (MLC) with an overall accuracy of 95.5% (84.2% of kappa coefficient) with 95% confidence interval. The relationship between field parameters, especially exposed plant height and water depth with SAR backscatter, was explored to design empirical models for each of the three rice classes. Significant relationships were observed in all the rice classes (coefficient of determination, R 2, value more than 0.85) even though they had similar growth profiles but varied with water depth. The two main conclusions drawn from this study are (i) the importance of multi-temporal SAR data for the classification of rice culture types based on water regimes and (ii) the advantages and flexibility of the knowledge-based classifier for classification of RADARSAT-1 data. However, being empirical, the approach needs modification according to the current rainfall pattern and rice-growing practice.  相似文献   

15.
This paper presents a geomatics-based approach for the operational monitoring of spatio-temporal changes in a northern wetland. It demonstrates how valuable, and otherwise unattainable, spatially distributed and timely baseline data can be obtained using basic remote sensing techniques. It further shows how these data can be combined to retrieve information pertaining to the hydro-ecological relationships in the wetland. The study was conducted in the Peace-Athabasca Delta (PAD), which is a large wetland complex in northeastern Alberta, Canada. Combinations of Radarsat Synthetic Aperture Radar (SAR) and optical satellite images (Landsat or SPOT multispectral) were used to generate a time-series of flood maps for the six-year period, 1996 to 2001. These maps clearly depict the extent of the 1996 and 1997 overland floods and the subsequent water level draw down. A flood duration map that shows how long each image cell was inundated was generated by combining the series of flood maps. The flood duration map highlights regions where the duration of flooding appears to be highest or lowest. Such maps are invaluable for any ecological change detection protocols that may be developed for this region. The general vegetation patterns were also mapped using multi-temporal SPOT-4 images from the summer season (May and August) of 2001 to an accuracy of 86%. By comparing the vegetation and flood duration maps, the relationship between vegetation patterns and duration of flooding could be examined. Results indicated that basins inundated for longer periods (3-5 years) were dominated by relatively more productive graminoid (grass-like) vegetation, whereas, areas flooded for less than two years were characterised by less productive shrub vegetation. Airborne scanning LiDAR (Light Detection and Ranging) data from the summer (June) of 2000 were also used to generate a Digital Elevation Model (DEM) of selected non-flooded areas. LiDAR DEM accuracy was satisfactory (Root Mean Square Error of 0.24 m) and it proved to be sufficiently detailed to detect the subtle topographic patterns in this relatively flat region. Comparison of the vegetation map to the DEM demonstrated that the shrubs were located in areas that were, on average, between 0.5 m (in south) and 0.73 m (in north) higher than the graminoid covered regions. Notwithstanding other parameters that influence the distribution of vegetation, these results indicate that flood duration and elevation are two important factors. The usefulness of these spatial databases recommends the timely generation of flood and vegetation maps in the continued monitoring of the changes and relationships in this delta.  相似文献   

16.
The goal of this research was to decompose polarimetric Synthetic Aperture Radar (SAR) imagery of upland and flooded forests into three backscatter types: single reflection, double reflection, and cross-polarized backscatter. We used a decomposition method that exploits the covariance matrix of backscatter terms. First we applied this method to SAR imagery of dihedral and trihedral corner reflectors positioned on a smooth, dry lake bed, and verified that it accurately isolated the different backscatter types. We then applied the method to decompose multi-frequency Jet Propulsion Laboratory (JPL) airborne SAR (AIRSAR) backscatter from upland and flooded forests to explain scattering components in SAR imagery from forested surfaces. For upland ponderosa pine forest in California, as SAR wavelength increased from C-band to P-band, scattering with an odd number of reflections decreased and scattering with an even number of reflections increased. There was no obvious trend with wavelength for cross-polarized scattering. For a bald cypress-tupelo floodplain forest in Georgia, scattering with an odd number of reflections dominated at C-band. Scattering power with an even number of reflections from the flooded forest was strong at L-band and strongest at P-band. Cross-polarized scattering may not be a major component of total backscatter at all three wavelengths. Various forest structural classes and land cover types were readily distinguishable in the imagery derived by the decomposition method. More importantly, the decomposition method provided a means of unraveling complex interactions between radar signals and vegetated surfaces in terms of scattering mechanisms from targets. The decomposed scattering components were additions to the traditional HH and V V backscatter. One cautionary note: the method was not well suited to targets with low backscatter and a low signal-to-noise ratio.  相似文献   

17.
The Sahelian floodplains are of high ecological and economical importance, providing water and fresh pasture in the dry season. A spatial model is presented to predict the yearly flooding extent of the Waza-Logone floodplain based on cumulative runoff in the catchment area and estimations of the soil moisture prior to the flooding. Observations of flooding extent were based on thresholding 16-day composite Moderate Resolution Imaging Spectroradiometer (MODIS) shortwave infrared (SWIR) images. The Soil Conservation Service Curve Number (SCS-CN) method was used to calculate cumulative runoff within the Logone catchment area based on rainfall estimates (RFEs) for Africa. MODIS SWIR images acquired prior to the flooding were used as indicators for soil moisture. The mean observed flooding extent of the Waza-Logone floodplain during the period 2000–2005 was 6747 km2 with a standard deviation of 1838 km2. Multiple regression analysis was performed to create a predictive model forecasting flooding extent 1.5 months in advance with a coefficient of determination (R 2) equal to 0.957. Multiple regression modelling was also performed for three subregions separately. The 1.5-month forecast model for the Waza subregion resulted in the highest accuracy (R 2?=?0.950). A floodwater distribution map was created for this subregion model, allowing determination where the flooding occurs for an estimated flood size. The average additional error caused by the mapping procedure was 138 km2, which is relatively small compared to an average flooded area of 3211 km2 for the Waza subregion. As the flooding extent in the Waza-Logone floodplain is highly correlated to the amount of natural resources available in the dry season, the model may be a valuable tool for sustainable management of these resources.  相似文献   

18.
Radarsat and JERS-1 imagery were used for mapping zonation of vegetation communities in the Amazon floodplain. Imagery analysis indicates that at periods of minimum water level the backscattering values of both C and L bands are the lowest and as the water level rises, so do the backscattering values. JERS-1 imagery exhibits a larger dynamic range of backscattering in response to the ground cover for the two extremes of water level (10?dB) compared to Radarsat imagery. The backscattering differences from different ground cover allowed the use of a region-based classification that produced seasonal maps with accuracies higher than 95% for vegetated areas of the floodplain. These seasonal maps were used to estimate the spatial distribution and time of inundation and the vegetation cover of the floodplain. It was possible to determine that semi-aquatic vegetation, tree-like aquatic plants, and shrub-like trees colonize regions flooded for at least 300?days?year?1. Secondary colonizers, such as tall well-developed floodplain forest, cover regions flooded for approximately 150?days?year?1, and floodplain climax forest colonize regions inundated for approximately 60?days?year?1.  相似文献   

19.
ABSTRACT

The complex, dynamic and narrow boundaries between vegetation types make wetland mapping challenging. Hereafter the case study of the Hamoun-e-Hirmand wetland is considered by analysing eight Synthetic Aperture Radar (SAR) Images acquired in dry and wet periods with three wavelengths (X-band ~ 3 cm, C-band ~ 6 cm, and L-band ~ 25 cm), three polarizations (HH, VV and VH), and four incidence angles (22°, 30°, 34° and 53°). Then, the Support Vector Machine (SVM) classification method was applied to classify TerraSAR-X, Sentinel-1, and ALOS-PALSAR images. The final wetland land cover map was created by combining the classification results obtained from each sensor. In the case in question, results show that TerraSAR-X (X-band, HH-53°) and Sentinel-1 data (C-band, VV-34°) were useful for determining the flooded vegetation area in the wet period. This is crucial for the conservation of water bird habitats since flooded vegetation is an ideal environment for the nesting and feeding of water birds. PALSAR data (L-band in both HH and VH polarizations, 30°) were capable of separating the classes of vegetation density in the wetland. In the dry period, Sentinel-1 (VV and VH, 34°) and TerraSAR-X (HH, 22° and 53°) had higher potential in land cover mapping than PALSAR (HH and VH, 30°). Based on these results, Sentinel-1 in VV and VH provides the highest ability to discriminate between dry and green plants. TerraSAR-X is better for separating meadow and bare land. The results obtained in this paper can reduce the ambiguity in selecting satellite data for wetland studies. The results can also be used to produce more accurate data from satellite images and to facilitate wetland investigation, conservation and restoration.  相似文献   

20.
A comparison of change detection approaches for flooded area mapping using Synthetic Aperture Radar (SAR) images is provided. The aim was to assess the usefulness of fuzzy and neuro-fuzzy techniques for classification of SAR data. The work addresses both options of data-level fusion and decision-level fusion. The former is realized with multitemporal fuzzy or neural classification and the latter by combining classifications or fuzzy memberships for the pre- and post-event images. Highest overall accuracy values and flooded area accuracy values (90.3% producer's, 71.9% user's) were obtained from the neuro-fuzzy approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号