首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MODIS火灾产品的火点检测算法主要以4和11μm通道亮温数据来识别火点,在应用于不同地区和不同季节时有一定局限性。在分析MODIS现有火点检测算法的基础上,对算法相关阈值及参数进行适当调整,同时考虑火灾前后NDVI的变化,以及林火燃烧过程中伴生烟羽使火点下风方气溶胶光学厚度明显增加的特点,构建了基于亮温—植被指数—气溶胶光学厚度的火点识别算法,并应用多次火灾个例对本算法进行验证。结果表明:算法提高了对高温热点和低温焖烧火点的识别能力,有效降低了高温热点的误报率和低温火点的漏报率,使火点检测算法在不同环境的适应性有所增强。  相似文献   

2.

The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, launched on the National Aeronautics and Space Administration Terra satellite at the end of 1999, was designed with 36 spectral channels for a wide array of land, ocean, and atmospheric investigations. MODIS has a unique ability to observe fires, smoke, and burn scars globally. Its main fire detection channels saturate at high brightness temperatures: 500 K at 4 µm and 400 K at 11 µm, which can only be attained in rare circumstances at the 1 km fire detection spatial resolution. Thus, unlike other polar orbiting satellite sensors with similar thermal and spatial resolutions, but much lower saturation temperatures (e.g. Advanced Very High Resolution Radiometer and Along Track Scanning Radiometer), MODIS can distinguish between low intensity ground surface fires and high intensity crown forest fires. Smoke column concentration over land is for the first time being derived from the MODIS solar channels, extending from 0.41 µm to 2.1 µm. The smoke product has been provisionally validated both globally and regionally over southern Africa and central and south America. Burn scars are observed from MODIS even in the presence of smoke, using the 1.2 to 2.1 µm channels. MODIS burned area information is used to estimate pyrogenic emissions. A wide range of these fire and related products and validation are demonstrated for the wild fires that occurred in northwestern USA in Summer 2000. The MODIS rapid response system and direct broadcast capability is being developed to enable users to obtain and generate data in near real-time. It is expected that health and land management organizations will use these systems for monitoring the occurrence of fires and the dispersion of smoke within two to six hours after data acquisition.  相似文献   

3.
Traditional fire-detection algorithms with either fixed or contextual thresholds mainly rely on the temperature contrast between a fire pixel and its surrounding pixels in the mid-infrared (MIR) and thermal-infrared (TIR) bands. Solar contamination and thermal atmospheric path radiance in the MIR band can weaken the contrast between the high- and low-temperature objects and undermine the capability of detecting fires during daytime. The degree of solar contamination in the MIR band depends on variable surface albedo, solar zenith angle and atmospheric conditions. A method is proposed to eliminate the solar radiation and thermal path radiance received by the MODerate Resolution Imaging Spectroradiometer (MODIS) sensor in the MIR band. The modified MIR brightness temperature is incorporated into the existing fire-detection algorithm (referred to as ‘MOD14’) after re-tuning the daytime thresholds. The performance of the revised algorithm (referred to as ‘MOD-MOD’) was tested using coincident data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) onboard the Terra satellite and visual inspection of large quantities of MODIS imageries. Moderate improvements are achieved in the detection rate while retaining low commission errors. Improvement of the detection by MOD-MOD depends on land-cover type. The majority of the false detections occur over deforested area.  相似文献   

4.
MODIS active fire data offer new information about global fire patterns. However, uncertainties in detection rates can render satellite-derived fire statistics difficult to interpret. We evaluated the MODIS 1 km daily active fire product to quantify detection rates for both Terra and Aqua MODIS sensors, examined how cloud cover and fire size affected detection rates, and estimated how detection rates varied across the United States. MODIS active fire detections were compared to 361 reference fires (≥ 18 ha) that had been delineated using pre- and post-fire Landsat imagery. Reference fires were considered detected if at least one MODIS active fire pixel occurred within 1 km of the edge of the fire. When active fire data from both Aqua and Terra were combined, 82% of all reference fires were found, but detection rates were less for Aqua and Terra individually (73% and 66% respectively). Fires not detected generally had more cloudy days, but not when the Aqua data were considered exclusively. MODIS detection rates decreased with fire size, and the size at which 50% of all fires were detected was 105 ha when combining Aqua and Terra (195 ha for Aqua and 334 ha for Terra alone). Across the United States, detection rates were greatest in the West, lower in the Great Plains, and lowest in the East. The MODIS active fire product captures large fires in the U.S. well, but may under-represent fires in areas with frequent cloud cover or rapidly burning, small, and low-intensity fires. We recommend that users of the MODIS active fire data perform individual validations to ensure that all relevant fires are included.  相似文献   

5.
A new algorithm, using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite reflectance and aerosol single scattering properties simulated from a chemistry transport model (GEOS-Chem), is developed to retrieve aerosol optical thickness (AOT) over land in China during the spring dust season. The algorithm first uses a “dynamic lower envelope” approach to sample the MODIS dark-pixel reflectance data in low AOT conditions, to derive the local surface visible (0.65 μm)/near infrared (NIR, 2.1 μm) reflectance ratio. Joint retrievals of AOT at 0.65 μm and surface reflectance at 2.1 μm are then performed, based on the time, location, and spectral-dependent single scattering properties of the dusty atmosphere as simulated by the GEOS-Chem. A linearized vector radiative transfer model (VLIDORT) that simultaneously computes the top-of-atmosphere reflectance and its Jacobian with respect to AOT, is used in the forward component of the inversion of MODIS reflectance to AOT. Comparison of retrieved AOT results in April and May of 2008 with AERONET observations shows a strong correlation (R = 0.83), with small bias (0.01), and small RMSE (0.17); the figures are a substantial improvement over corresponding values obtained with the MODIS Collection 5 AOT algorithm for the same study region and time period. The small bias is partially due to the consideration of dust effect at 2.1 μm channel, without which the bias is − 0.05. The surface PM10 (particulate matter with diameter less than 10 μm) concentrations derived using this improved AOT retrieval show better agreement with ground observations than those derived from GEOS-Chem simulations alone, or those inferred from the MODIS Collection 5 AOT. This study underscores the value of using satellite reflectance to improve the air quality modeling and monitoring.  相似文献   

6.
This paper gives an account of day–night active forest fire monitoring conducted over the sub‐tropical and moist temperate forests of the Uttaranchal State, India, during 2005 using the Defence Meteorological Satellite Program – Operational Line Scan system (DMSP‐OLS) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. The state experienced heavy fire episodes during May–June 2005 and daily datasets of DMSP‐OLS (night‐time) and selected cloud‐free MODIS (daytime) datasets were used in mapping active fire locations. DMSP‐OLS collects data in visible (0.5 to 0.9 µm) and thermal (10.5 to 12.5 µm) bands and detects dim sources of lighting on the earth's surface, including fires. The enhanced fire algorithm for active fire detection (version 4) was used in deriving fire products from MODIS datasets. Fire locations derived from DMSP‐OLS and MODIS data were validated with limited ground data from forest department and media reports. Results of the study indicated that the state experienced heavy fire episodes, most of them occurring during night‐time rather than daytime. Validation of satellite‐derived fires with ground data showed a high degree of spatial correlation.  相似文献   

7.
Agricultural burning in the Southeastern United States detected by MODIS   总被引:2,自引:0,他引:2  
The southeastern United States, including the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, and Virginia, had a high occurrence of fire activity as detected by the 1 km Moderate Resolution Imaging Spectroradiometer (MODIS) TERRA Active Fire Product (MOD 14). The analysis of the satellite data from 2001 to 2004 showed that agricultural burning in the southeastern United States accounted for an average of 16% of annual fire activity. The southeastern region contributed an average of 33% of all agricultural burning detected in the contiguous United States. Crop residues that burned in the southeast included rice, winter wheat, sugarcane, soybean and cotton. Much of the agricultural burning occurred in June and from October to January and was related to the harvest of winter wheat and rice in the spring and the harvest of sugarcane, soybean and cotton in the fall and winter. The results showed that cropland burning was spatially dependent on crop type and temporally dependent on management practices (planting/harvesting). Arkansas, Florida, and Louisiana contributed more than 75% of all agricultural burning in the southeast. A 250 m MODIS land cover map cover for 2004 was developed for these three states using a decision tree classification and validation from a field campaign in the fall of 2004. Compared to the standard MODIS 1 km Land Cover Dataset (MOD 12) product ([Friedl, M. A., McIver, D. K., Hodges, J. C. F., Zhang, X. Y., Muchoney, D., Strahler, A. H., Woodcock, C. E., Gopal, S., Schneider, A., Cooper, A., Baccini, A., Gao, F., Schaaf, C. (2002), Global land cover mapping from MODIS: algorithms and early results. Remote Sensing of the Environment, 83, 287-302.]), the 250 m classified images contained on average 50% more cropland area and improved the estimation of cropland area based on validation from ground control sites of croplands. Results from the decision tree classification for each state revealed that in 2004 agricultural burning contributed 73%, 54%, and 33% of total fires for Arkansas, Florida, and Louisiana, respectively.  相似文献   

8.
This paper provides a comparison of selected algorithms that have been proposed for global active fire monitoring using data from the NOAA Advanced Very High Resolution Radiometer (AVHRR). A simple theoretical model was used to generate scenes of AVHRR infrared channel 3 and channel 4 data containing fires of various sizes and temperatures in a wide range of terrestrial biomes and climates. Three active fire detection algorithms were applied to the simulated AVHRR images and their performance was characterized in terms of probability of fire detection and false alarm as functions of fire temperature and area, solar and viewing geometry, visibility, season and biome. Additional comparisons were made using AVHRR imagery. Results indicate that while each algorithm has a comparable probability of detecting large (1000m2) fires in most biomes, substantial differences exist in their ability to detect small fires, their tolerance of smoke and neighbouring fires, the number of false alarms, and their overall suitability for global application. An improved automatic algorithm is finally presented. It offers enhanced active fire detection with comparable or reduced false alarm rates in most biomes.  相似文献   

9.
An image mining method was applied to Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data to estimate the area burned by forest fires occurring in Galicia (Spain) between 4 August and 15 August 2006. Five different inputs were considered: post-fire near-infrared reflectance (NIR) band, post-fire Normalized Difference Vegetation Index (NDVI) image, pre-fire and post-fire NDVI difference image and 4-μm and 11-μm thermal bands. The proposed image mining method consists of three steps: a pre-classification step, applying kernel smoothing, based on the fast Fourier transform (FFT), a modelling step applying Gaussian distributions on individual grid cells with deviating values, and a thresholding step classifying the model into burned and unburned classes. Polygons collected in the field with Global Positioning System (GPS) measurements from a helicopter permitted validation of the burned area estimation. A Z-test based on the κ statistic compared the accuracy of this estimation with the accuracies achieved by traditional methods based both on spectral changes in reflectance after the fire and active fire detection. The results showed a significant improvement (7.5%) in the accuracy of the burned area estimation after kernel smoothing. Burned area estimation based on the smoothed difference image between pre-fire and post-fire NDVI image had the highest accuracy (κ = 0.72). We conclude that the image mining algorithm successfully extracted burned area objects and that extraction was best when smoothing was applied prior to classification. Image mining methods based on using the κ statistic thus provide a valuable validation procedure when selecting the optimal MODIS input image for estimating burned area objects.  相似文献   

10.
An operational procedure is presented that allows detecting active fires based on information from Meteosat-8/SEVIRI over Africa. The procedure takes advantage of the temporal resolution of SEVIRI (one image every 15 min), and relies on information from SEVIRI channels (namely 0.6, 0.8, 3.9, 10.8 and 12.0 µm) together with information on illumination angles. The method is based on heritage from contextual algorithms designed for polar, sun-synchronous instruments, namely NOAA/AVHRR and MODIS/TERRA-AQUA. A potential fire pixel is compared with the neighboring ones and the decision is made based on relative thresholds as derived from the pixels in the neighborhood.An overview is provided of results obtained for January and July 2007, respectively over Northern Africa (NAfr) and Southern Africa (SAfr), paying special attention to the spatial and temporal distribution of active fires. In both NAfr and SAfr, two types of vegetation clearly dominate in terms of fire activity, namely tree-covered areas, containing 40% of total fires observed, and shrub-covered areas, with 25% (19%) of total fires in NAfr (SAfr). However, marked differences were also to be found between the two regions; more than two-thirds (70%) of fires in SAfr were observed in land cover classes dominated by trees but the proportion is much lower (40%) in the case of NAfr. The duration of active fires in both regions tends to follow two-parameter generalized Pareto distributions, with both the scale and the shape parameters presenting very similar values for NAfr and SAfr.An assessment of the robustness of the algorithm, consistency of results and added value of the product was made by studying the daily cycle of fire activity over two regions located in northern and southern hemisphere Africa and by means of systematic comparisons against fire incidence reported in previous works and against hot spots extracted from the global daily active fire product developed by the MODIS Fire Team. The observed fire incidence by land cover class compares well with the results reported in previous works and it is shown that there is an overall coherence between results obtained from SEVIRI and MODIS when adequate spatial and temporal scales are chosen when performing the comparison. Data from MODIS and SEVIRI may be viewed as complementary, the latter having the added value of providing a much finer temporal resolution that allows uncovering certain aspects of fire behavior, namely the characterization of daily fire cycles.  相似文献   

11.
Methods for retrieving subpixel fire temperature and fire area have been developed over several years, but the retrieval accuracies of these methods require further improvement. In this study, a channel of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor centred at 2.1 μm and associated with the MODIS 4.0 2.1 μm channel is used to retrieve the temperature and area of fires. To test the feasibility of using the 2.1 μm channel for retrieval, the fire contribution ratios of MODIS 2.1, 4.0 and 11.0 μm channels are first examined using simulated surface radiance. Considering the difficulties in obtaining real-time validation data and in evaluating the retrieval accuracies, simulated MODIS data are used for this study. A modified method, which combines MODIS 2.1 and 4.0 μm channels, is introduced and described in detail. Compared with the traditional method, which utilizes a combination of 4.0 and 11.0 μm channels (Dozier 1981 Dozier, J. 1981. A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sensing of Environment, 11: 221229. [Crossref], [Web of Science ®] [Google Scholar]), the results show that the 2.1 μm channel is more sensitive to active fires and the large area of fires than the 11.0 μm channel, but is less sensitive to smouldering fires and small fires. The modified method that we propose has better performance and higher accuracy in active fires (temperature ≥ 800 K) and in large fires (area ≥ 0.5%). However, the traditional method is more accurate for smouldering fires and small fires. Finally, a sensitivity analysis is performed to estimate the uncertainty in assessing fire temperature and area. Experimental results indicate that under realistic conditions (fire temperatures of approximately 1000 K and a fire fractional area greater than 0.005), the retrieval errors for fire temperature and fire area are ±35 K and 20%, respectively.  相似文献   

12.
The detection and mapping of burned areas from wildland fires is one of the most important approaches for evaluating the impacts of fire events. In this study, a novel burned area detection algorithm for rapid response applications using Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m surface reflectance data was developed. Spectra from bands 5 and 6, the composite indices of the Normalized Burn Ratio, and the Normalized Difference Vegetation Index were employed as indicators to discover burned pixels. Historical statistical data were used to provide pre-fire baseline information. Differences in the current (post-fire) and historical (pre-fire) data were input into a support vector machine classifier, and the fire-affected pixels were detected and mapped by the support vector machine classification process. Compared with the existing MODIS level 3 monthly burned area product MCD45, the new algorithm is able to generate burned area maps on a daily basis when new data become available, which is more applicable to rapid response scenarios when major fire incidents occur. The algorithm was tested in three mega-fire cases that occurred in the continental USA. The experimental results were validated against the fire perimeter database generated by the Geospatial Multi-Agency Coordination Group and were compared with the MCD45 product. The validation results indicated that the algorithm was effective in detecting burned areas caused by mega-fires.  相似文献   

13.
The combination of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) and the Geostationary Earth Radiation Budget (GERB) instruments on Meteosat-8 provides a powerful new tool for detecting aerosols and estimating their radiative effect at high temporal and spatial resolution. However, at present no specific aerosol treatment is performed in the GERB processing chain, severely limiting the use of the data for aerosol studies. A particular problem relates to the misidentification of Saharan dust outbreaks as cloud which can bias the shortwave and longwave fluxes. In this paper an algorithm is developed which employs multiple-linear regression, using information from selected thermal infrared SEVIRI channels, to detect dust aerosol over ocean and provide an estimate of the optical depth at 0.55 μm (τ055). To test the performance of the algorithm, it has been applied to a number of dust events observed by SEVIRI during March and June 2004. The results are compared to co-located MODIS observations taken from the Terra and Aqua platforms, and ground based observations from the Cape Verde AERONET site. In terms of detection capability, employing the algorithm results in a notable improvement in the routine GERB scene identification. Locations identified by MODIS as being likely to be dust contaminated were originally classified as cloud in over 99.5% of the cases studied. With the application of the detection algorithm approximately 60-70% of these points are identified as dusty depending on the dust model employed. The algorithm is also capable of detecting dust in regions and at times which would be excluded when using shortwave observations, due for example to the presence of sun-glint, or through the night. We further investigate whether the algorithm is capable of generating useful information concerning the aerosol loading. Comparisons with co-located retrievals from the SEVIRI 0.6 μm solar reflectance band observations show a level of agreement consistent with that expected from the simulations, with rms differences of between 0.5 and 0.8, and a mean bias ranging from − 0.5 to 0.3 dependent on the dust representation employed in the algorithm. Temporally resolved comparisons with observations from the Capo Verde AERONET site through the months of March and June reinforce these findings, but also indicate that the algorithm is capable of discerning the diurnal pattern in aerosol loading. The algorithm has now been incorporated within the routine GERB processing in detection mode, and will be used to provide an experimental aerosol product for assessment by the scientific community.  相似文献   

14.
In this study, spectral indices were calculated from single date HyMap (3 m; 126 bands), Hyperion (30 m; 242 bands), ASTER (15/30 m; 9 bands), and a time series of MODIS nadir BRDF-adjusted reflectance (NBAR; 1 km, 7 bands) for a study area surrounding the Tumbarumba flux tower site in eastern Australia. The study involved: a) the calculation of a range of physiologically-based vegetation indices from ASTER, HyMap, Hyperion and MOD43B NBAR imagery over the flux tower site; b) comparison across scales between HyMap, Hyperion and MODIS for the normalized difference water index (NDWI) and the Red-Green ratio; c) analysis of relationships between tower-based flux and light use efficiency (LUE) measurements and seasonal and climatic constraints on growth; and d) examination of relationships between fluxes, LUE and time series of NDVI, NDWI and Red-Green ratio. Strong seasonal patterns of variation were observed in NDWI and Red/Green ratio from MODIS NBAR. Correlations between fine (3 and 30 m) and coarse (1 km) scale indices for a small region around the flux tower site were moderately good for Red/Green ratio, but poor for NDWI. Hymap NDWI values for the understorey canopy were much lower than values for the tree canopy. MODIS NDWI was negatively correlated with CO2 fluxes during warm and cool seasons. The correlation indicated that surface reflectance, affected by a spectrally bright grassland understorey canopy, was decoupled from growth of trees with access to deep soil moisture. The application of physiologically-based indices at earth observation scale requires careful attention to applicability of band configurations, contribution of vegetation components to reflectance signals, mechanistic relationships between biochemical processes and spectral indexes, and incorporation of ancillary information into any analysis.  相似文献   

15.

The present study proposes and improved self-adaptive algorithm (ISAA) for the detection of active fires using only channel 3 data of the Advanced Very High Resolution Radiometer (AVHRR). ISAA is specifically devised for the detection of small fires. The fire detection procedure is mainly based on the multitemporal approach (TN-ALT) devised by Cuomo et al . (2001a) and makes use of statistical analyses of real fires from different regions of the Italian peninsula. Such analyses allow the characterization of these fires as well as the computation of dynamic threshold values, which are variable in time and space and calibrated on local environmental conditions. ISAA was developed using an initial data sample of 1000 fires that occurred in 1996, and then in order to achieve a highly satisfactory performance in fire detection, the statistical analyses are updated yearly, so that a wider data sample can be considered for subsequent years. The evaluation tests made use of multitemporal satellite data (from 1997 to 1999) and ground observations provided by the Italian Forestry Service. The results obtained in different regions of North and South Italy demonstrated that ISAA detected about 80% of fires (with a low rate of false alarms at 15%) and showed a high fire discrimination capability both in the worst and good light conditions. The most recent contextual methods of fire detection were applied to significant test cases and compared with the results obtained from ISAA. This comparison showed that ISAA was able to find an increased number of fires as well as to reduce false alarms in all different light conditions.  相似文献   

16.
Improved wildland fire emission inventory methods are needed to support air quality forecasting and guide the development of air shed management strategies. Air quality forecasting requires dynamic fire emission estimates that are generated in a timely manner to support real-time operations. In the regulatory and planning realm, emission inventories are essential for quantitatively assessing the contribution of wildfire to air pollution. The development of wildland fire emission inventories depends on burned area as a critical input. This study presents a Moderate Resolution Imaging Spectroradiometer (MODIS) - direct broadcast (DB) burned area mapping algorithm designed to support air quality forecasting and emission inventory development. The algorithm combines active fire locations and single satellite scene burn scar detections to provide a rapid yet robust mapping of burned area. Using the U.S. Forest Service Fire Sciences Laboratory (FiSL) MODIS-DB receiving station in Missoula, Montana, the algorithm provided daily measurements of burned area for wildfire events in the western U.S. in 2006 and 2007. We evaluated the algorithm's fire detection rate and burned area mapping using fire perimeter data and burn scar information derived from high resolution satellite imagery. The FiSL MODIS-DB system detected 87% of all reference fires > 4 km2, and 93% of all reference fires > 10 km2. The burned area was highly correlated (R2 = 0.93) with a high resolution imagery reference burn scar dataset, but exhibited a large over estimation of burned area (56%). The reference burn scar dataset was used to calibrate the algorithm response and quantify the uncertainty in the burned area measurement at the fire incident level. An objective, empirical error based approach was employed to quantify the uncertainty of our burned area measurement and provide a metric that is meaningful in context of remotely sensed burned area and emission inventories. The algorithm uncertainty is ± 36% for fires 50 km2 in size, improving to ± 31% at a fire size of 100 km2. Fires in this size range account for a substantial portion of burned area in the western U.S. (77% of burned area is due to fires > 50 km2, and 66% results from fires > 100 km2). The dominance of these large wildfires in burned area, duration, and emissions makes these events a significant concern of air quality forecasters and regulators. With daily coverage at 1-km2 spatial resolution, and a quantified measurement uncertainty, the burned area mapping algorithm presented in this paper is well suited for the development of wildfire emission inventories. Furthermore, the algorithm's DB implementation enables time sensitive burned area mapping to support operational air quality forecasting.  相似文献   

17.
An active-fire based burned area mapping algorithm for the MODIS sensor   总被引:4,自引:0,他引:4  
We present an automated method for mapping burned areas using 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) imagery coupled with 1-km MODIS active fire observations. The algorithm applies dynamic thresholds to composite imagery generated from a burn-sensitive vegetation index and a measure of temporal texture. Cumulative active fire maps are used to guide the selection of burned and unburned training samples. An accuracy assessment for three geographically diverse regions (central Siberia, the western United States, and southern Africa) was performed using high resolution burned area maps derived from Landsat imagery. Mapped burned areas were accurate to within approximately 10% in all regions except the high-tree-cover sub-region of southern Africa, where the MODIS burn maps underestimated the area burned by 41%. We estimate the minimum detectable burn size for reliable detection by our algorithm to be on the order of 120 ha.  相似文献   

18.
We present an automated fire detection algorithm for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor capable of mapping actively burning fires at 30-m spatial resolution. For daytime scenes, our approach uses near infrared and short-wave infrared reflectance imagery. For nighttime scenes a simple short wave infrared radiance threshold is applied. Based on a statistical analysis of 100 ASTER scenes, we established omission and commission error rates for nine different regions. In most regions the probability of detection was between 0.8 and 0.9. Probabilities of false alarm varied between 9 × 10− 8 (India) and 2 × 10− 5 (USA/Canada). In most cases, the majority of false fire pixels were linked to clusters of true fire pixels, suggesting that most false fire pixels occur along ambiguous fire boundaries. We next consider fire characterization, and formulate an empirical method for estimating fire radiative power (FRP), a measure of fire intensity, using three ASTER thermal infrared channels. We performed a preliminary evaluation of our retrieval approach using four prescribed fires which were active at the time of the Terra overpass for which limited ground-truth data were collected. Retrieved FRP was accurate to within 20%, with the exception of one fire partially obscured by heavy soot.  相似文献   

19.
Plant species discrimination using remote sensing is generally limited by the similarity of their reflectance spectra in the visible, NIR and SWIR domains. Laboratory measured emissivity spectra in the mid infrared (MIR; 2.5 μm–6 μm) and the thermal infrared (TIR; 8 μm–14 μm) domain of different plant species, however, reveal significant differences. It is anticipated that with the advances in airborne and space borne hyperspectral thermal sensors, differentiation between plant species may improve. The laboratory emissivity spectra of thirteen common broad leaved species, comprising 3024 spectral bands in the MIR and TIR, were analyzed. For each wavelength the differences between the species were tested for significance using the one way analysis of variance (ANOVA) with the post-hoc Tukey HSD test. The emissivity spectra of the analyzed species were found to be statistically different at various wavebands. Subsequently, six spectral bands were selected (based on the histogram of separable pairs of species for each waveband) to quantify the separability between each species pair based on the Jefferies Matusita (JM) distance. Out of 78 combinations, 76 pairs had a significantly different JM distance. This means that careful selection of hyperspectral bands in the MIR and TIR (2.5 μm–14 μm) results in reliable species discrimination.  相似文献   

20.
Snow is a medium that exhibits highly anisotropic reflectance throughout the solar spectrum. The anisotropic nature of snow shows more variability in snow metamorphic processes for wavelengths beyond 1.0 μm than in the visible spectrum. This behavior poses challenges for the development of a model that can retrieve broadband albedo from reflectance measurements throughout the snow season. In this paper, a semi-empirical model is presented to estimate near infrared (0.8-2.5 μm) albedo of snow. This model estimates spectral albedo at a wavelength of 1.240 μm using only three variables: solar zenith angle, scattering angle and measured reflectance, which is used to retrieve near infrared albedo. To form a base for such a model, quantification of reflectance patterns and variability in varying snow condition, i.e. snow grain size, and sun-sensor geometry are prerequisite. In this study the DIScrete Ordinate Radiative Transfer (DISORT) model is used to simulate bi-directional reflectance. The performance of the developed model is evaluated by using DISORT simulated spectral albedo for various snow grain sizes and solar zenith angles, as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) and in-situ measurements. The developed model is shown to be capable of estimating spectral albedo at 1.240 μm with acceptable accuracy. The mean error (ME), mean absolute error (MAE), and root mean squared error (RMSE) in the estimates are found to be 0.053, 0.055 and 0.064, respectively, for a wide range of sun-sensor geometries and snow grain sizes. The model shows better accuracy for spectral albedo estimates than for those computed using the Lambertian reflectance assumption for snow, reducing the error in the range and standard deviation by 75% and 65%, respectively. Applying the model to MODIS, the retrieved albedo is found to be in good quantitative agreement (r = 0.82) with in-situ measurements. These improvements in albedo estimation should allow more accurate use of remote sensing measurements in climate and hydrological models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号