首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a quantitative assessment of the capability of the differential SAR interferometry (DInSAR) technique referred to as Small BAseline Subset (SBAS) approach to investigate fault creep phenomena. In particular we have computed, via the SBAS-DInSAR algorithm, time series of the surface displacements relevant to the Hayward fault zone, within the San Francisco Bay Area (California), from the European Space Agency's ERS-1/2 satellite radar data for the 1992 to 2000 time period. Starting from the DInSAR time series we measured the relative displacements across the fault with no need for any atmospheric filtering step. These results have been systematically compared to the measurements available from the alignment arrays that are located along the fault. Our analysis shows that the standard deviation of the differences between the DInSAR and the in situ measurements is on the order of 2 mm. Moreover, the estimated mean deformation rates have an accuracy that is better than 1 mm/year.  相似文献   

2.
In this paper, we identified recently subsiding areas in Jharia Coalfield, Jharkhand, India from the shorter temporal baseline Radarsat-2 C-band interferometric synthetic aperture radar (InSAR) data pairs of 2012. Although shorter wavelength C-band differential InSAR (DInSAR) is more sensitive to slow deformation and better suited for higher precision land subsidence measurement, the dynamic and adverse land cover in mining areas and resulting temporal decorrelation problem poses a serious problem for DInSAR observation in mining areas. We used smaller temporal baseline data pairs and adopted InSAR coherence-guided incremental filtering with smaller moving windows to highlight the deformation fringes over temporal decorrelation noise. We identified the deformation fringes and validated them based on ground information to prepare the land subsidence map of the coalfield in 2012. Several new, previously unreported subsidence areas were detected in the present study with a total subsiding area of 6.9 km2. The recent incidence of roof collapse on 15 November 2014 at Angar Patra village in Katras region of the coalfield where 45 houses collapsed and 10 people were injured is situated in a highly subsiding vulnerable area as obtained from the present study. Due to spatial discontinuities of InSAR coherence, DInSAR phase unwrapping for the entire study area in one go did not appear feasible. To avoid this problem, we performed DInSAR processing in smaller spatial subsets and unwrapping of the subset interferograms by a ‘minimum cost flow’ algorithm. Subsequently, we plotted unwrapped phase profiles across the deformation fringes and retrieved the maximum deformation phase with respect to background phase and translated them into radar line of sight (LOS) displacement rates. For obtaining the average subsidence rates, we adopted InSAR coherence-weighted LOS displacement rates taking into account the contribution of each data pair as a function of DInSAR phase quality of the fringe areas. Ground-based subsidence measurements by precision levelling were conducted in four test sites that had been undergoing active underground mining during the observation period. We compared space-borne DInSAR-based subsidence rates obtained by the adopted technique with precision levelling measurements. Overall, the results are found to agree well. In the four test sites with gentle to flat topography, land subsidence occurs at slow to moderate rates due to compression of in-filled material (resulting from sand stowing in underground mining), without any evidence of roof collapse. In such cases, the horizontal displacement component is less significant, and overall surface displacement occurs essentially in the vertical direction. However, we assessed the nature of subtle horizontal strain to infer relative shrinkage or dilation of the land surface which could be additive or subtractive to vertical displacement in DInSAR-based LOS displacement.  相似文献   

3.
We have illustrated the key results of the Differential SAR Interferometry (DInSAR) analysis focused on the ground deformation of Long Valley caldera and Mono Basin, eastern California. In particular, we have applied the DInSAR algorithm referred to as Small BAseline Subset (SBAS) approach and processed 21 SAR images, spanning the time interval from 1992 to 2000, acquired from descending arbits by the ERS‐1 and ERS‐2 sensors of the European Space Agency (ESA). The deformation affecting the resurgent dome of Long Valley caldera has been highlighted as well as the previously unreported subsidence of the Pahoa island, located in Mono Lake.  相似文献   

4.
We apply the Permanent Scatterers Synthetic Aperture Radar Interferometry (PS-InSAR) technique to the Campania Region (Southern Italy), which includes the Southern Apennines chain and Plio-Quaternary structural depressions, with the aim to detect ground displacements at a regional scale. The study area, which extends for 13,600 km2, is characterized by intense urbanization, active volcanoes (Phlegraean Fields, Vesuvius and Ischia), seismogenic structures, landslides, hydrogeological instability. PS-InSAR technique allows us to identify a set of radar benchmarks (PS) where accurate displacement measurements can be carried out. About 1.7·106 PS are identified by processing Synthetic Aperture Radar (SAR) images acquired in ascending and descending orbits from 1992 to 2001 by the European Remote Sensing satellites (ERS). The PS-InSAR application at regional scale detected ground deformations ranging from + 28 to − 39 mm/yr. The calculated velocity values are consistent with the available GPS and levelling data from selected areas. We identify volcanic areas in which the deformation is mainly related to the depressurization of the local hydrothermal systems, and recognize deformations along seismogenic and aseismic NNW-SSE and NW-SE faults. The deformations localized along the Southern Apennines chain are mainly related to landslides while those occurring in the plains are due to subsidence processes induced by intensive drainage from wells, i.e. anthropic activity. The review of 9 years of SAR data shows that tectonic, volcanic/hydrothermal, gravity, and anthropic processes are responsible for the ground deformation of Campania. The proposed joint interpretation of deformation fields related to natural and anthopogenic factors provides a comprehensive view of the dynamics of the Earth’s surface.  相似文献   

5.
We investigate the surface deformation of the eastern California area that includes Long Valley caldera and Mono Basin. We apply the SAR Interferometry (InSAR) algorithm referred to as Small BAseline Subset (SBAS) approach that allows us to generate mean deformation velocity maps and displacement time series for the investigated area. The results presented in this work represent an advancement of previous InSAR studies of the area that are mostly focused on the deformation affecting the caldera. In particular, the proposed analysis is based on 21 SAR data acquired by the ERS-1/2 sensors during the 1992-2000 time interval, and demonstrates the capability of the SBAS procedure to identify and analyze displacement patterns at different spatial scales for the overall area spanning approximately 5000 km2. Two previously unreported localized deformation effects have been detected at Paoha Island, located within the Mono Lake, and in the McGee Creek area within the Sierra Nevada mountains, a zone to the south of the Long Valley caldera. In addition a spatially extended uplift effect, which strongly affects the caldera, has been identified and analyzed in detail. The InSAR results clearly show that the displacement phenomena affecting the Long Valley caldera have a maximum in correspondence of the resurgent dome and are characterized by the sequence of three different effects: a 1992-1997 uplift background, a 1997-1998 unrest phenomenon and a 1998-2000 subsidence phase. Moreover, the analysis of the retrieved displacement time series allows us to map the extent of the zone with a temporal deformation behavior highly correlated with the detected three-phases deformation pattern: background uplift-unrest-subsidence. We show that the mapped area clearly extends outside the northern part of the caldera slopes; accordingly, we suggest that future inversion models take this new evidence into account. The final discussion is dedicated to a comparison between the retrieved InSAR measurements and a set of GPS and leveling data, confirming the validity of the results achieved through the SBAS-InSAR analysis.  相似文献   

6.
We applied the Interferometric Point Target Analysis (IPTA) technique to study the city of Rome (Italy) aiming to detect and measure the surface movements of buildings and urban structures. The available SAR dataset has been delivered by ESA CAT1 3258 and ranges the period 1992-2005. In particular ERS1-ERS2 data processed covers 1995-2000, while Envisat ASAR 2002-2005. The Point Target velocity map shows a general stability except for some very local areas affected by subsidence rate larger than 10 mm/year. The analysis of the time series, compared to a detailed geological and geotechnical investigation of the lithostratigraphy of the alluvial sediments of the Tiber River, and combined with a temporal reconstruction of the expansion of the city over the alluvial valleys, allowed us to depict the main factors controlling the observed subsidence. These are: the in situ effective stress conditions, the related compressibility and viscous characteristics of the loaded soils, the thickness of the compressible stratum, the time since loading instant, and the entity of loading. Furthermore the observed subsidence is time-dependent, even at a long time-scale, with respect to the age of the buildings being most of the buildings constructed since the '50s still affected by slow subsidence. We mainly focused on the Grottaperfetta stream valley that is characterized by an anomalous high and time-lasting subsidence. Original data on the lithostratigraphic setting of this alluvial valley indicate that the high subsidence rate measured up to 2005 is caused by a still active primary consolidation process.  相似文献   

7.
Accurate monitoring of the developing process of a surface subsidence basin is the basis of building damage assessment and surface deformation prediction. In this paper, the Synthetic Aperture Radar (SAR) data of three different imaging geometries, TerraSAR, Radarsat-2, and Sentinel-1A, were exploited. Firstly, two-dimensional (2D) time-series deformation of the surface subsidence basin caused by 15,235 working face mining was obtained based on Multidimensional Small Baseline Subset (MSBAS) technology from 19 December 2015 to 5 March 2016. By comparing vertical deformation with levelling data, it is shown that the root-mean-square error of vertical deformation is 3.2 mm and the standard deviation is 1.9 mm when the ascending-descending track SAR data is available. Otherwise, the root-mean-square error of vertical deformation is 18.1 mm and the standard deviation is 11.6 mm. Because of the low precision of the north–south horizontal movement monitored by the SAR sensor, the vertical deformation acquired by MSBAS technology and the rules of the mining subsidence (horizontal movement is proportional to tilt) were combined to obtain the north–south horizontal movement which was proven to be reliable by comparing the 2D time-series deformation obtained by MSBAS technology. Then, the deformation of the railway in the surface subsidence basin was analysed based on the three-dimensional (3D) time-series deformation. The results show that the subsidence, tilt, and horizontal movement strongly influence the railway in the monitoring period, but will not affect the normal traffic. This experiment lays a technical foundation for preventing the occurrence of mining disasters and verifies the ability to monitor the deformation of buildings and structures by interferometry synthetic aperture radar technology.  相似文献   

8.
With the exploitation of coal resources, ground surface subsidence continues to occur in mining areas, destroying the ecological environment and significantly affecting the daily productivity and life of humans. The differential synthetic aperture radar interferometry (D-InSAR) technique is widely used to monitor ground surface deformation because of its unique advantages such as high accuracy and wide coverage. However, conventional D-InSAR technology provides only one-dimensional (1D) displacement monitoring along the radar line of sight (LOS). This article proposes a method based on an analysis of the mining subsidence law for true three-dimensional (3D) displacement monitoring by combining D-InSAR and a subsidence prediction model based on the probability integral method. In this approach, 1D displacement, obtained using D-InSAR, is then combined with the prediction model to obtain the 3D displacement of ground surface target points. Here, 3D displacement curves were obtained for the Fengfeng mining area (China) using RadarSat-2 images obtained on 9 January and 2 February 2011. True ground surface displacement was measured simultaneously by levelling when the 152under31 s working face was being exploited in Jiulong mine. Vertical displacement and inclined deformation calculated using the proposed method were compared with levelling survey data and the results showed average differences of 3.2 mm and 0.1 mm m?1, respectively; the calculated maximum displacement in the east–west and south–north directions were 106 and 73 mm, respectively. The spatial distribution of the displacements was in accordance with the mining subsidence law. Thus, the new method can retrieve highly accurate 3D displacements caused by mining subsidence.  相似文献   

9.
This article presents 3D surface deformation mapping results derived from satellite synthetic aperture radar (SAR) data acquired over underground coal mines. Both ENVISAT Advanced Synthetic Aperture Radar (ASAR) and Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) data were used in this study. The quality of the 3D deformation mapping results due to underground mining is mainly limited by two factors. (1) Differential interferometric synthetic aperture radar (DInSAR) is less sensitive to displacement along the north–south direction in the case of the current SAR satellite configurations. (2) The mining-induced displacement is continuous and nonlinear; and the accuracy of the 3D DInSAR measurement is severely affected by the similar but non-identical temporal overlaps of the InSAR pairs. The simulation and real data analyzes have shown that it would be more practical to use DInSAR pairs with the assumption of negligible northing displacement to derive the displacements in the easting and vertical directions. The northing displacement could then be estimated from the residuals. This limitation could be overcome in the future with the launch of more radar satellites, which would provide better viewing geometry.  相似文献   

10.

Satellite radar interferometry provides a technique to monitor a zone involving active salt tectonic phenomena. We detected movements in the Dead Sea area between 1993 and 1999. These preceded the catastrophic collapse (22 March 2000) of a newly built 12 km dyke belonging to the industrial salt evaporation ponds of the Arab Potash Company. Eighteen other dykes are present and still operational in this area of complex seismotectonic and hydrogeological settings. We used differential Synthetic Aperture Radar (SAR) interferometry (DInSAR) to investigate precursory deformations. Analysis of data shows that the collapsed area and its surroundings were in active subsidence at least 7 years before the event (maximum 44 mm in slant range from 16 December 1995 to 11 October 1997). This case emphasizes DInSAR as a tool suitable to identify deformations in such sensitive areas. It should be used at the stage of pre-feasibility studies of major projects and later in their stability monitoring, when required conditions of application are met.  相似文献   

11.
合成孔径雷达差分干涉测量(DInSAR)技术在地表形变监测方面已得到广泛应用。介绍了将差分InSAR技术运用于矿区地表沉降监测,获得了河北峰峰煤矿地表Envisat/ASAR和ALOS/PALSAR的雷达形变干涉相位图,并对Envisat C波段和ALOS L波段的形变干涉相位图进行了相干特性和相位特性的分析。通过综合考虑C波段和L波段的优势与不足,将两者联合使用,实验表明利用多模式雷达数据对矿区地表沉降进行检测的可行性。同时,通过对雷达干涉相位图的分析,能够及时提供正在进行地下开采活动的矿区地理位置。  相似文献   

12.
Estimation of Arctic glacier motion with satellite L-band SAR data   总被引:3,自引:0,他引:3  
Offset fields between pairs of JERS-1 satellite SAR data acquired in winter with 44 days time interval were employed for the estimation of Arctic glacier motion over Svalbard, Novaya Zemlya and Franz-Josef Land. The displacement maps show that the ice caps are divided into a number of clearly defined fast-flowing units with displacement larger than about 6 m in 44 days (i.e. 50 m/year). The estimated error of the JERS-1 offset tracking derived displacement is on the order of 20 m/year. Occasionally, azimuth streaks related to auroral zone ionospheric disturbances were detected and dedicated processing steps were applied to minimize their influence on the estimated motion pattern. Our analysis demonstrated that offset tracking of L-band SAR images is a robust and direct estimation technique of glacier motion. The method is particularly useful when differential SAR interferometry is limited by loss of coherence, i.e. for rapid and incoherent flow and large acquisition time intervals between the two SAR images. The JERS-1 results, obtained using SAR data acquired by a satellite operated until 1998, raise expectations of L-band SAR data from the ALOS satellite launched in early 2006.  相似文献   

13.
The spatiotemporal variability of subsidence around the East Mesa Geothermal Field (EMGF) near the All American Canal (AAC) has been measured using 30 temporally averaged interferograms from 1992 to 2000. Deformation rate maps from two shorter time periods indicated the maximum subsidence rate of the EMGF was reduced from??43 mm year?1 (1992–1997) to??34 mm year?1 (1996–2000) corresponding to decreasing net geothermal water production. The maximum subsidence on the East Highline Canal was??9.5 ± 0.5 and??2.4 ± 0.8 cm for each shorter time period. Interferometric synthetic aperture radar (InSAR) stacking demonstrated its utility in monitoring subsidence of the canal caused by the nearby geothermal plant at regional coverage superior to ground levelling networks. Such data on the subsidence of surface and subsurface hydrodynamics along the US–Mexico border are scarce, and are particularly significant in a zone of present and likely future acute water resource management sensitivity.  相似文献   

14.
Tianjin, China, has been suggested to have serious ground subsidence due to excessive extraction of groundwater. It is essential to monitor this subsidence, which has potential hazards and risks. Time series InSAR (TS-InSAR), such as small baselines subset (SBAS), is a powerful tool that can monitor ground deformation with high accuracy and at high spatial resolution over a long time interval. However, the high computational complexity may exceed computer memory limit when high-spatial resolution SAR (such as TerraSAR-X, TSX) images are used. In this article, the multi-look approach is introduced to the SBAS tool from StaMPS/MTI (Stanford method for persistent scatter/multi-temporal InSAR) in order to balance the spatial resolution and subsidence information in detection. The looks used for multi-looking are first fixed in terms of the accuracy of deformation and the density of coherent points. Then, the recent subsidence in Tianjin is extracted using multi-looking SBAS based on 48 TSX images acquired from 2009 to 2013. The results are validated by levelling measurements with a root mean square error (RMSE) of 4.7 mm year–1, which demonstrates that SBAS analysis can effectively monitor deformation based on multi-looking TSX acquisitions in the area under investigation. Besides, the results also show that Tianjin has been suffering from subsidence during this period, and there were two separate large subsidence basins located in this study area with more than 500 mm cumulative subsidence. Moreover, the subsidence rate increased after December 2010 in Tianjin.  相似文献   

15.
ABSTRACT

River deltas are very complex environments vulnerable to flooding. Most of the world’s deltas are facing the immediate threat of land subsidence that jeopardizes the safety of millions of people worldwide. In Italy, the Po River Delta (PRD) (Northeast Italy) is an area historically affected by high rate of subsidence due to natural and anthropic factors. Even if the subsidence rates remarkably reduced during the last three decades, this process continues to be alarming in particular in low-lying sectors and along the coastline, where the loss of elevation, combined with the sea-level rise, increases the risk related to flooding. In this study, we monitored the subsidence affecting the entire PRD area with advanced differential interferometric synthetic aperture radar (A-DInSAR) techniques applied to three C-band SAR data sets acquired by the European Remote Sensing satellites, Environmental Satellite, and Sentinel-1A satellite in the last 25 years (from 1992 to 2017). The results of the interferometric processing, consisting of both mean velocity and displacement time series along the satellite line of sight, validated by comparison with levelling and global positioning system measurements, show increasing subsidence moving from the inland to the coastline, with maximum deformation velocities, for the most recent data, in the order of ?30 mm year?1. In particular, many embankments near the coastal area are affected by high values of subsidence, which increase the flooding hazard of the entire deltaic territory. This work shows the importance of adopting A-DInSAR techniques to update the knowledge of the extent and rates of deformation of subsiding areas in low-lying territories such as river deltas. The outputs of such monitoring can be of primary importance for the future protection of the territory and the flooding risk mitigation.  相似文献   

16.
We have exploited the capability of the differential synthetic aperture radar (SAR) interferometry (DInSAR) technique, referred to as Small BAseline Subset (SBAS) approach, to analyse surface deformation at two distinct spatial scales: a low resolution, large scale, and a fine resolution, local scale. At the large scale, the technique investigates DInSAR data with a ground resolution of the order of 100 m×100 m and leads to generate mean deformation velocity maps and associated time series for areas extending to some thousands of square kilometres. At the local scale, the technique exploits the SAR images at full spatial resolution (typically of the order of 5 m×20 m), detecting and analysing localized deformation phenomena. The study is focused on the city of Rome, Italy, and we used the ERS‐1/2 satellite radar data relevant to the 1995–2000 time period. The presented results demonstrate the capability of the SBAS approach to retrieve, from the low‐resolution DInSAR data, large‐scale deformation information leading to identify several sites affected by significant displacements. Our analysis permitted us to conclude that a major contribution to the detected displacements is due to the consolidation of the alluvial soils present in the area, mostly enforced by the buildings' overload. Furthermore, in a selected area, a detailed analysis was carried out by exploiting the full resolution DInSAR data. In this case we investigated deformation phenomena at the scale of single buildings. As key result we showed that differential displacements of few mm a?1, affecting single man‐made structures or building complexes, could be detected, thus allowing to identify sites that may potentially be involved in critical situations.  相似文献   

17.
The DInSAR technique with a multibaseline is becoming popular nowadays to investigate slow urban deformation. In this paper, we focus on deformation retrieval in large areas, including urban and suburban areas. Based on the multibaseline DInSAR algorithm proposed by Mora, three extensions are derived. First, least‐squares adjustment and error‐controlling methods are used to obtain stable deformation velocity and height error estimations. The least‐squares QR factorizaiton algorithm is emphasized to solve large, linear, and sparse functions. Second, a new complex network is presented to limit noise effects on the Delaunay triangular network. Third, by combining complex and Delaunay networks, large‐area deformation is investigated, from centre urban areas to suburban areas. The enhanced algorithm is performed to investigate the subsidence of Cangzhou, Hebei province (northern China) during 1993–1997 by using 9 ERS SLC data. The experimental results show serious subsidence in the region and are validated by levelling data and groundwater wells data. Compared with levelling data, the estimation errors of linear deformation velocity in urban areas are in the range of (?2, 2) mm year?1, and in suburban areas, the errors are in the range of (?26, 15) mm year?1, which is sufficiently feasible to determine the status of subsidence relative to the maximum deformation velocity of about ?100 mm year?1. The subsidence centres in urban areas are consistent with the spatial distribution of groundwater wells, which provides evidence that groundwater overexploitation is the main cause of subsidence in Cangzhou. The closure of wells will be a good way to control subsidence in the future.  相似文献   

18.
Surface subsidence associated with the construction of a headrace tunnel in the Swiss Alps at more than 2000 m above sea level (a.s.l.) has been detected at two locations with satellite differential Synthetic Aperture Radar (SAR) interferometry. At the first location, a subsidence trough of about 4 cm in the satellite line-of-sight direction following the headrace tunnel axes has been measured between August 1995 and August 1996. Similar values from SAR data of ascending and descending orbits indicate displacements in the vertical direction of the movement. In the second case, a symmetric cone of depression with a maximum displacement of about 4 cm between 1995 and 1997 has been observed above the tunnel. Differences in the results from satellite SAR data of ascending and descending orbits indicate that the direction of displacement in this second case was not entirely vertical. Large-scale consolidation associated with pore-pressure reduction in the rock mass arising from tunnel drainage at about 200-400 m depth beneath the topographical surface is believed to be the contributing mechanism (Zangerl et al., 2008a, 2008b). Evidence for this process is based on pore pressure recordings in nearby deep wells. In both areas, the subsidence was followed by a small uplift of about one centimeter between 1997 and 1999, after the tunnel was cased with permeable concrete segments. This partial recovery is also visible in pore pressure records and can be related to the elastic components of rock mass deformation.  相似文献   

19.
Although the differential interferometric synthetic aperture radar (DInSAR) technique has the potential for monitoring ground deformation with millimetric accuracy, it still suffers from temporal and geometric decorrelation. In this paper, the corner reflectors differential interferometry synthetic aperture radar (CRDInSAR) technique was used to overcome the limitations of conventional DInSAR. We studied the basic principles of CRDInSAR, discussed the calculation of the flat earth and topographic phases based on the geometry of satellite and corner reflectors, presented the phase unwrapping approach for the sparse grid of corner reflectors, then investigated the construction of, and solution to, the unwrapped phase system equation. Subsequently, we applied CRDInSAR to monitor the displacement of the Shuping landslide in Hubei Province, China. In this study, we processed five SAR images on a descending pass acquired by the Environmental Satellite (ENVISAT) Advanced Synthetic Aperture Radar (ASAR) sensor from September 2005 to March 2006, and compared the achieved results of CRDInSAR with Global Positioning System (GPS) measurements at the same time of the SAR data acquisition assumed as reference. The result indicates a good agreement between the measurements provided by the two different techniques, which shows that CRDInSAR allows monitoring of slow landslide deformation in low coherence areas and provides accurate results.  相似文献   

20.
Fushun is a famous coal-mining city in northeastern China with more than 100 years of history. Long-term underground coal mining has caused serious surface subsidence in the eastern part of the city. In this study, multitemporal and multisource satellite remote sensing data were used to detect subsidence and geomorphological changes associated with underground coal mining over a 10-year period (1996–2006). A digital elevation model (DEM) was generated through Synthetic Aperture Radar (SAR) interferometry processing using data from a pair of European Remote Sensing Satellite (ERS) SAR images acquired in 1996. In addition, a Shuttle Radar Topography Mission (SRTM) DEM obtained from data in 2000 and an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEM from 2006 were used for this study. The multitemporal DEMs indicated that the maximum vertical displacement due to subsidence was around 13 m from 1996 to 2006. Multitemporal ASTER images showed that the flooded water area associated with subsidence had increased by 1.73 km2 over the same time period. Field investigations and ground level measurements confirmed that the results obtained from the multitemporal remote sensing data agreed well with ground truth data. This study demonstrates that DEMs derived from multisource satellite remote sensing data can provide a powerful tool to map geomorphological changes associated with underground mining activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号