首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以苯胺为单体,过硫酸铵为氧化剂,盐酸为掺杂酸,采用化学氧化法制备出盐酸掺杂聚苯胺(PANI-HA),研究了过硫酸铵与苯胺单体摩尔比(n APS:n An)、HCl浓度、反应温度和反应时间对PANI-HA电导率的影响;采用正交分析法研究了各影响因素对PANI-HA电导率的主次关系。结果表明:影响PANI-HA电导率的主次关系为反应温度n APS:n An反应时间HCl浓度;制备PANI-HA的最佳工艺为nAPS:n An=1.0,HCl浓度1.0 mol/L,反应温度10℃,反应时间8 h。  相似文献   

2.
热电材料是一类通过固体内部载流子的运动来实现热能与电能之间转换的材料。聚苯胺(PANI)具有原料便宜易得,合成简便,热导率低等优点,其热电性能备受关注。为了了解合成条件对聚苯胺热电性能的影响,用化学氧化聚合法合成了盐酸(HCl)掺杂的聚苯胺,并研究了引发剂(APS)与苯胺(An)的物质的量比值(n_(AP)S/n_(An))、HCl浓度、温度对聚苯胺热电性能的影响。研究表明:最佳的合成条件为n_(APS)/n_(An)值为1.25,HCl浓度1.0 mol.L~(-1),合成温度为20℃。  相似文献   

3.
不同酸掺杂聚苯胺的性能研究   总被引:2,自引:0,他引:2  
合成了盐酸(HC1)、氨基磺酸(NH2SO3H)、十二烷基苯磺酸(DBSA)掺杂的聚苯胺(PANI),探讨了酸用量、氧化剂用量、反应时间以及反应温度等因素对产物电导率的影响,并对这3种酸掺杂的聚苯胺的压片电阻和热稳定性进行了比较.结果表明:当c(HCl)=0.5 mol·L-1,反应时间为6 h,n(APS)∶n(An)为1.0,在1 ℃左右下所得HCl掺杂的PANI的电导率为1.98 S·cm-1;当c(NH2SO3H)=1.0 mol·L-1,反应时间为6 h,n(APS)∶n(An)为2.0,在2 ℃左右下所得NH2SO3H掺杂的PANI的电导率为0.26 S·cm-1;当c(DBSA)=1.0 mol·L-1,反应时间为8 h,n(APS)∶n(An)为2.0,在2 ℃左右下所得DBSA掺杂的PANI的电导率为0.98 S·cm-1.对于产物的固体压片电阻,HC1掺杂PANI最小为10 Ω,NH2SO3H掺杂PANI最大为120 Ω.而对于产物的热稳定性,NH2SO3H和DBSA掺杂的PANI具有较好的环境稳定性,要好于HC1掺杂的PANI.  相似文献   

4.
原位聚合沉积制备聚苯胺/聚酰亚胺/聚苯胺复合膜   总被引:1,自引:0,他引:1  
以聚酰亚胺(PI)膜为基体,采用分散聚合原位沉积方法制得聚苯胺/聚酰亚胺/聚苯胺(PANI/PL/PANI)三层复合膜.复合膜表面PANI层外观质量优异,电导率达10~0S/cm.实验结果表明:加入高浓度空间稳定剂(聚乙烯吡咯烷酮,PVP)、调整氧化剂(过硫酸铵,APS)和介质酸(盐酸)的用量可制得表面质量和电导率高的复合膜.较适宜的反应条件为稳定剂质量浓度4%,APS与苯胺(An)的物质的量比为2:4,盐酸浓度为0.5 mol/L.  相似文献   

5.
采用化学氧化聚合法在苯胺/过硫酸铵/HCl的水溶液体系中合成聚苯胺,并对其聚合条件([S2O2-8]/[An]比、HCl浓度变化等)进行了优化,以提高PAn的电导率和产率。通过四探针、傅立叶红外吸收光谱(FTIR)、XRD、CV等测试方法对聚苯胺电导率及掺杂前后结构的变化进行了分析。结果表明,当[S2O2-8]/[An]=1∶1、[HCl]=0.8 mol/L时电导率达到最大值2.13 S/cm,产率为94.37%。聚合物具有一定的结晶性,通过CV曲线可以分析出PAn具有掺杂/脱掺杂的电化学活性。  相似文献   

6.
盐酸掺杂聚苯胺的热稳定性的研究   总被引:5,自引:1,他引:4  
对盐酸掺杂的聚苯胺 (PANI HCl)进行热处理 ,通过元素分析、TG、FT IR、WAXD等研究了热处理温度对PANI HCl的组成、结构及电导率的影响。结果表明PANI HCl的温度低于 140℃时具有良好的稳定性 ,但温度超过 160℃后 ,起掺杂作用的HCl会从聚苯胺分子链中脱除而导致电导率逐渐下降 ;当热处理温度为2 60℃时 ,2h内样品的电导率比处理前下降 11个数量级 ,只有 3 4 6× 10 - 10 S·cm- 1。此外 ,随着热处理温度的升高 ,PANI HCl的结晶能力也逐渐下降  相似文献   

7.
通过再掺杂法制备了对甲苯磺酸(TSA)掺杂的导电聚苯胺(PANI),探究掺杂时间及对甲苯磺酸水溶液的浓度对PANI的电导率和结构的影响,通过四探针法和傅里叶变换红外光谱仪(FTIR)分析表征了掺杂态PANI的电导率和结构,并探究掺杂时间对掺杂态PANI导电性能影响的机理,还利用热重分析仪(TG)探究TSA对PANI热稳定性的影响。结果表明,掺杂时间为12 h、TSA水溶液浓度为05 mol/L所制得的掺杂态PANI具有最好的电导率。  相似文献   

8.
将苯胺与聚丙烯腈(PAN)纤维接枝聚合,第一次采用5-磺基水杨酸(SSA)掺杂制得PAN/聚苯胺(PANI)复合纤维,再以盐酸(HCl)第二次掺杂制得PAN/PANI复合纤维;研究了第二次掺杂的反应条件及PAN/PANI复合纤维的抗静电性能。结果表明:红外光谱分析证明了PAN/PANI复合纤维中有PANI存在;HCl第二次掺杂最佳条件为HCl浓度2 mol/L,反应温度0℃,反应时间6 h,PAN/PANI复合纤维的比电阻约2 kΩ.cm;第二次用HCl掺杂的复合纤维的抗静电性能比第一次用SSA掺杂的抗静电性能更好。  相似文献   

9.
《广东化工》2021,48(12)
通过研究HCl、H3PO4和樟脑磺酸(CSA)掺杂对聚苯胺(PANI)纳米纤维形貌的影响得到其结构可控制备的规律。以掺杂PANI为电极材料对多巴胺(DA)进行差示脉冲伏安法测试,结果表明HCl和H3PO4掺杂的PANI对DA的电化学氧化活性较好,而H3PO4和CSA掺杂的PANI在DA检测中表现出较好的稳定性。  相似文献   

10.
采用原位复合法分别制备了盐酸(HCl)和十二烷基苯磺酸(DBSA)掺杂的导电聚苯胺(PANI)/钛酸钡(BaTiO3)[分别记为PANI(HCl)/、PANI(DBSA)/BaTiO3]复合材料,研究了复合材料的结构、形貌、热性能、电导率及介电性能。结果表明,2种复合材料均具有核壳结构,与PANI(HCl)/BaTiO3相比,PANI(DBSA)/BaTiO3具有更好的热稳定性、更高的电导率及介电常数。  相似文献   

11.
以钨硅酸(H4SiW12O40)为掺杂剂,过硫酸铵(APS)为氧化剂,制得PANI/H4SiW12O40复合物。该复合物是以H4SiW12O40为核,以PANI为表层的新型聚合物,检测表明在室温下对氨气有较好的灵敏度。通过控制变量法,考察了不同制备因素对PANI/H4SiW12O40乳液稳定性及其复合材料气敏性能的影响,初步确定试验中各反应物的用量范围和实验条件:n(DBSA)/n(An)=2.0,n(APS)/n(An)=1.0,m(H4SiW12O40)/m(An)=3.0,聚合时间为16 h。  相似文献   

12.
以十二烷基苯磺酸钠(SDBS)为乳化剂,采用乳液聚合法制备了盐酸或磷酸与十二烷基苯磺酸(DBSA)共掺杂的聚苯胺[(HCl+DBSA)-PANI或(H_3PO_4+DBSA)-PANI]。用扫描电镜、傅里叶变换红外光谱仪、X射线衍射仪和四探针电导率测试仪表征了掺杂聚苯胺的形貌、结构和电导率。将添加了掺杂态聚苯胺的E44环氧树脂刷涂在Q235低碳钢表面得到复合涂层(PANI/EP),并通过电化学阻抗谱和浸泡试验考察了它们在3.5%NaCl溶液中的耐蚀性。两种共掺杂态聚苯胺都呈束状结构,(HCl+DBSA)-PANI的结构更均一。添加PANI可以明显提高环氧涂层对碳钢的防腐作用,其中(HCl+DBSA)-PANI的效果更好。  相似文献   

13.
采用分散聚合体系,在聚酰亚胺(PI)薄膜表面原位沉积聚苯胺(PANI)制得高导电性PANI/PI复合膜。用不同物理、化学方法对PI薄膜表面进行改性。结果表明,通过等离子体处理、超声波处理以及不同溶液浸泡处理的PI基体均改善了复合膜表面质量,提高复合膜电导率,其中过硫酸胺(APS)水溶液处理制得复合膜的电导率相对最高。紫外光谱和红外光谱分析证实基体表面为质子酸掺杂的PANI膜层,膜中不含有空间稳定剂聚乙烯吡咯烷酮。  相似文献   

14.
XPS对电导性纳米聚苯胺的性能表征   总被引:1,自引:1,他引:0  
以微乳液聚合法合成了导电性纳米聚苯胺(PANI),讨论了乳化剂的用量对聚苯胺电导率的影响,并用XPS对其性能进行了表征.结果表明:当十二烷基苯磺酸钠(SDBS)和苯胺(An)的摩尔比在1左右时, PANI的电导率有最大值;SDBS以两种方式存在,即掺杂PANI的SDBS和自由独立于PANI的SDBS;在一定酸性SDBS掺杂的条件下,(-N= NH )/N比率决定PANI的电导率.  相似文献   

15.
采用分散聚合方法在玻璃基体表面制备得表面光滑聚苯胺(PANI)导电膜.采用扫描电子显微镜(SEM)研究氧化剂过硫酸铵(APS)加入方式、质子酸环境对制得膜形貌的影响.通过紫外光谱和红外光谱分析玻璃基体表面导电PANI膜的结构.结果发现:采用滴加APS方式可制得致密PANI膜;本身黏度较大的无机舍氧酸(高氯酸、磷酸)与PVP稳定剂并用时会使体系黏度增大,无法制得导电薄膜(高氯酸、PVP体系)或只能得到有缺限的膜(磷酸、PVP体系).紫外分析证实玻璃基体表面是掺杂态PANI膜,红外分析表明PANI膜结构中不合有稳定剂PVP.膜的电导率数量级在10-3S/cm,电导率高低与形貌好坏存在一致性.  相似文献   

16.
采用超声氧化聚合法,以自制的不同钒取代的磷钼杂多酸Hn+3PMo12-nVnO40(n=1、2、3)配合过硫酸铵(APS),合成三种聚苯胺基复合电容材料H4PMo11VO40/PANI、H5PMo10V2O40/PANI、H6PMo9V3O40/PANI,并通过元素分析、红外(IR)光谱、X-射线衍射图谱(XRD)和扫描电镜(SEM)对材料的成分、结构及表面形貌进行了表征。以复合材料在0.5 mol/L H2SO4电解液,-0.1~0.7 V电位范围下的循环伏安曲线所包围面积的大小为指标,重点研究了杂多酸与APS在氧化聚合苯胺过程中氧化作用的相对强弱,及二者配比对复合材料电学性能的影响。结果表明,按照原始反应物物质的量比,PMo11V∶APS∶An=1/2∶7/10∶1,PMo10V2∶APS∶An=1/3∶9/10∶1,PMo9V3∶APS∶An=1/2∶9/10∶1条件合成的复合材料电容特性较好,且APS为主要氧化剂,PMo12-nVn起辅助氧化的作用。  相似文献   

17.
利用γ-氨丙基三乙氧基硅烷(KH550)氨基化改性Fe_3O_4纳米粒子,并以其为稳定剂、甲苯为软模板,与苯胺形成Pickering乳液,再以过硫酸铵(APS)为引发剂、HCl为掺杂剂,用界面聚合法合成了掺杂态聚苯胺(PANI)/KH550-Fe_3O_4复合材料。采用FTIR、SEM、XRD对样品形貌和结构进行了表征,通过振动样品磁强计(VSM)考察了不同浓度HCl对复合材料磁性能的影响。结果表明:当c(HCl)=0.1 mol/L时,复合材料的饱和磁强度高达24 841 A/m。用矢量网络分析仪(VNA)对复合材料的屏蔽和吸波性能进行了分析,结果表明:在c(HCl)=0.1 mol/L、复合材料厚度为1 mm、电磁波的频率为10 160 Hz下,复合材料的屏蔽效能高达40.682 dB,在12 400 Hz时反射损耗达-47.043 dB。  相似文献   

18.
利用分散聚合法,在玻璃基体表面原位聚合沉积得到透明导电聚苯胺(PANI)薄膜,考察了反应条件对PANI薄膜形貌、电导率等性能的影响。结果表明,反应温度选用冰水浴(0℃),氧化聚合反应温和,薄膜质量高;氧化剂APS(过硫酸铵)加入方式的细化,有利于改善薄膜的表观形貌和电导率;利用硅烷偶联剂OTS(十八烷基三氯硅烷)处理玻璃表面,得到的PANI薄膜更加细密均匀,电导率也显著提高;换用磷酸为掺杂酸,得到的PANI薄膜表观质量差,电导率低。  相似文献   

19.
本文采用乳液聚合法制备了十六烷基三甲基溴化铵改性漂珠/聚苯胺复合材料(FAFB-HDTMA/PAn),利用FTIR、SEM对产物的结构与形貌进行分析,并讨论了不同氧化剂过硫酸铵(APS)浓度对FAFB-HDTMA/PAn复合材料的产物颜色及其电学性能的影响.实验结果表明:利用FTIR和SEM分析证明HDTMA对FAFB修饰改性成功,FAFB-HDTMA被PAn包覆;通过观察复合产物颜色可知,随着APS:An浓度比的增加,产物颜色更趋近于掺杂态PAn的颜色;利用四探针技术测试发现,聚苯胺的电导率随着改性粉煤灰漂珠(FAFB-HDTMA)的加入而降低了近100倍;利用LCR数字电桥测试发现,在100 kHz~2 MHz的频率范围内,FAFB-HDTMA/PAn复合材料的相对介电常数和介电损耗随外加频率的增大而减小,进而可知当APS::An浓度比为0.8时,FAFB-HDTMA/PAn复合材料的电导率和相对介电性能均为最优效果.  相似文献   

20.
合成了对甲基苯磺酸(p-TSA)掺杂的导电聚苯胺(PANI)及聚苯胺/氧化钇(PANI/Y2O3)复合材料.比较了不同实验条件对两种材料电导率的影响,研究了两种材料的热稳定性及粒径分布.结果表明,在所研究实验条件下,PANI/Y2O3的电导率低于PANI,而热稳定性则优于PANI;Y2O3的掺入使PANI的粒径减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号