首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An easy and scalable approach is reported for the production of multi-layer graphene nanoribbons (GNRs) from thermally treated unzipped multi-walled carbon nanotubes (MWCNTs) by controlled oxidation and intercalation. The prepared GNRs are characterized using transmission and scanning electron microscopy, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. AFM studies show that the thickness of the unzipped MWCNTs lies in the range of 100–124 nm, which correspond to ∼150–185 GNRs, whereas the width is in the ranges of 500–700 nm. This could be due to the displacement of loose individual graphene layers in the solvent during sonication process. The irregular edges of the multi-layer GNR appeared due to the presence of functional groups attached at the edges, is confirmed by XPS. The XPS studies reveals that the amount of defects present on the nanoribbons after heat treatment at 1000 °C is almost same as that of as synthesized MWCNTs. However, on heat treatment at 2500 °C, defects are reduced and the quality of ribbon is improved. Also, Raman spectroscopy has confirmed that on heat treatment at 2500 °C the quality of GNRs is improved and I(D)/I(G) ratio decreases from 0.92 to 0.44.  相似文献   

2.
M. Yudasaka  T. Ichihashi  H. Kataura 《Carbon》2003,41(6):1273-1280
Raman spectra and transmission electron microscope images showed that diameter enlargement of HiPco, a kind of single-wall carbon nanotube, accompanied by tube-wall corrugation was caused by heat treatment (HT) at 1000 to 1700 °C. Further enlargement accompanied by straightening of the tube walls and incorporation of carbon fragments within the tubes became obvious after HT at 1800 to 1900 °C. The transformation of some single-wall carbon nanotubes into multi-wall nanotubes was observed after HT at 2000 °C, and most single-wall tubes were transformed into multi-wall ones by HT at 2400 °C. What influence the Fe contained in the HiPco tubes had on these structure changes was unclear; similar changes were observed in single-wall carbon nanohorns that did not contain any metal. This indicates that thermally induced changes in the structure of single-wall carbon nanotubes can occur without a metal catalyst. Heat treatment increased the integrity of the nanotube-papers, and this increase may have been due to tube-tube interconnections created by HT.  相似文献   

3.
LaFeO3 perovskites have been prepared by the glycine-nitrate process (GNP) at various glycine-to-nitrate molar ratios. The perovskites have been systematically characterized by X-ray diffraction, BET surface area, scanning electron microscopy, transmission electron microscopy and temperature-programmed reduction to study the effect of glycine concentration on various properties of LaFeO3. The X-ray diffraction patterns of the as-prepared and calcined samples show the formation of orthorhombic phase without any impurities. The BET specific surface areas of various perovskites increased with an increase in glycine-to-nitrate ratio (GNR) of 2.0 but were nearly constant at higher ratios. The scanning electron microscopy indicates that the prepared material is flake-like at GNRs ≤1.5 and exists as agglomerated particles at GNRs ≥2.0. The particle size of the as-prepared samples was in the range of 30-130 nm depending on the GNR and the calcined samples exhibited particle size in the range of 60-160 nm. The samples that were prepared at GNR < 1.5 did not show any peaks in temperature-programmed reduction, but the samples prepared at a GNR of 2.0 and above showed the reduction of Fen+.  相似文献   

4.
Multiwalled carbon nanotube (MWCNT)/alumina (Al2O3) nanocomposites containing CNT from 0.15 vol.% to 2.4 vol.% have been successfully fabricated by simple wet mixing of as-received commercial precursors followed by pressureless sintering. Extent of densification of nanocomposites sintered at low temperature (e.g. 1500 °C) was <90%, but increased up to ∼99% when sintered at 1700 °C and offered superior performance compared to pure Al2O3. Nanocomposites containing 0.3 vol.% MWCNT and sintered at 1700 °C for 2 h in Argon led to ∼23% and ∼34% improvement in hardness and fracture toughness, respectively, than monolithic Al2O3. In addition, the highest improvement (∼20%) in bending strength was obtained for 0.15 vol.% MWCNT/Al2O3 nanocomposite compared to pure Al2O3. Weibull analysis indicated reliability of nanocomposites increased up to 0.3 vol.% MWCNT, whereas, beyond that loading consistency was the same as obtained for pure Al2O3. Detailed microstructure and fractographic analysis were performed to assess structure-property relationship of present nanocomposites.  相似文献   

5.
Graphene nanoribbons (GNR) have been fabricated by a microexplosion method without severe oxidation – filling multi-walled carbon nanotubes (MWCNT) with potassium and then reacting with water vigorously. Transmission electron microscopy and scanning transmission electron microscopy have verified the synthesis mechanism: when MWCNTs are effectively filled with potassium, the microexplosion generated by reaction between water and potassium can split the MWCNTs to form GNRs. Most of the obtained GNRs have smooth edges and the maximum wall thickness of MWCNTs that can be split by this method is around 10 nm.  相似文献   

6.
C. Portet  Y. Gogotsi 《Carbon》2007,45(13):2511-2518
This paper describes the electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes as electrodes in electrical double layer capacitors with organic electrolyte. Onions were formed by vacuum annealing of 5 nm nanodiamond (ND) powder at 1200-2000 °C with the goal to investigate the effect of carbon microstructure on specific capacitance and ion transport. In contrast to micro- or mesoporous activated carbons, the outer surface of carbon onions is fully accessible to electrolyte ions and the size of pores between carbon onions or nanotubes does not depend on the annealing temperature. Charge-discharge measurements revealed a two times decrease in the specific capacitance of onions and nanotubes upon graphitization and formation of polyhedral particles after annealing at 1800 °C and above. However, the capacitance became less current dependant. The carbon onion cells are able to deliver the stored energy under a high current density with a capacitance twice than the one obtained with MWCNT. Electrical measurements and impedance spectroscopy showed about two orders of magnitude increase in conductivity of electrodes and twofold decrease in the equivalent series resistance of the assembled cells after heat treatments of ND. The time constant extracted from the impedance data is around 10 times smaller for ND annealed at above 1800 °C than for activated carbons and is closely approaching the one for MWCNT. This shows that the open structure of carbon onions leads to an increased ability to quickly deliver the stored energy.  相似文献   

7.
Electric arc-discharge single-wall carbon nanotubes are annealed between 1600 and 2800 °C under argon flow. Their stability and evolution are studied by coupling TEM, X-ray diffraction and Raman spectroscopy. The first modifications appear at 1800 °C with a significant decrease of the crystalline order. It is due to SWNTs coalescence leading to smaller bundles but with an increase of the tube diameters from 2 to 4 nm. From 2200 °C, SWNTs progressively disappear to the benefit of MWNTs having at first two to three carbon layers then reaching 7 nm external diameter. The possible mechanisms responsible for the SWNTs coalescence and instability and their transformation in MWNTs are discussed.  相似文献   

8.
A simple mixture of porous magnesium oxide and commercial molybdenum oxide shows high efficiency for the synthesis of carbon nanotubes through the catalytic decomposition of methane at 900 °C. Field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and transmission electron microscopy (TEM) were used to characterize the products. The results indicate that close-packed multi-walled carbon nanotube (MWCNT) bundles were synthesized and the carbon nanotubes restricted within the bundles were about 5-7 nm in diameter. A growth mechanism for the bundles was suggested based on the FE-SEM images of bundles produced using different reaction times, and the X-ray diffractions of the raw products grown at the initial stage. Raman spectroscopy and FE-SEM results on the bundles grown using different methane flow rates confirmed the growth mechanism of close-packed MWCNT bundles.  相似文献   

9.
Micro- and mesoporous carbide-derived carbon (CDC) was synthesised from molybdenum carbide (Mo2C) powder by gas phase chlorination in the temperature range from 400 to 1200 °C. Analysis of XRD results show that C(Mo2C), chlorinated at 1200 °C, consist mainly on graphitic crystallites of mean size, La = 9 nm and Lc = 7.5 nm. The first-order Raman spectra showed the graphite-like absorption peak at ∼1587 cm−1 and the disorder-induced (D) peak at ∼1348 cm−1. The low-temperature N2 adsorption experiments were performed and a specific surface area up to 1855 m2 g−1 and total pore volume up to 1.399 cm3 g−1 were obtained. Sorption measurements showed the presence of both micro- and mesopores after chlorination at 400-900 °C and only mesopores after chlorination at 1000°-1200 °C. Stepwise formation of micro- and mesopores was achieved and the peak pore size can be shifted from 0.8 nm up to 4 nm by increasing the chlorination temperature.  相似文献   

10.
Transparent 0.1 at.% Cr, 1.0 at.% Nd:YAG ceramics were fabricated by solid-state reaction and vacuum sintering using commercial Y2O3, α-Al2O3, Cr2O3 and Nd2O3 as raw materials. CaO and tetraethoxysilane (TEOS) were used as charge compensator and sintering aid, respectively. The powders were mixed in ethanol and doped with TEOS, dried and pressed. Pressed samples were sintered from 1450 to 1800 °C for 10 h. The relative density increased from 68.8% to 99.4% at the sintering temperature from 1450 to 1700 °C. Grain size increased with increase of sintering temperature and obvious grain growth occurred between 1650 and1700 °C. For the Cr,Nd:YAG ceramics sintered at 1750 and 1800 °C for 10 h, nearly pore-free microstructures with average particle size of ∼10 μm were obtained. The optical transmittance of the 1800 °C sintered sample was ∼70% in the infrared wavelength.  相似文献   

11.
Pressure–temperature-induced transformations of polyhedral carbon nanoparticles (PCN) and their binary mixture with naphthalene have been studied at 8 GPa and temperatures up to 1600 °C by X-ray diffraction, small-angle X-ray scattering, Raman spectroscopy, scanning and transmission electron microscopies. Qualitative distinction of the mechanism of PCN transformations in the single-component carbon system from binary hydrocarbon system has been established. The distinguishing feature of the solid-phase PCN transformation in single component system at temperatures above 1000 °C is their structural reorganization associated with the formation of carbonaceous cores with different morphologies, filling the internal cavities of starting PCNs. The structural transformations of PCN may also give rise to alteration of their external polyhedral shape. However, in the entire studied pressure–temperature region, the solid-phase transformations are limited to individual PCNs with the initial sizes in the 30–80 nm range. The combined solid–gas (fluid) phase transformations of PCN at 8 GPa in the hydrogen-containing system are associated with the destruction of PCN already at ∼900 °C and subsequent cumulative recrystallization of decomposition products. The latter process results in formation of micron-sized crystallites of graphite at 1000 °C and diamond at temperatures above 1100 °C.  相似文献   

12.
Non-transformable tetragonal scandia, yttria doped zirconia (SYDZ) nanopowders were prepared in large scale by the citric acid (CA) based gel method. The effect of ethylene glycol monobutyl ether (EGM):CA ratios and pH on the structure, morphology and SYDZ particle size was investigated. The microstructure of SYDZ was characterized by XRD, Raman scattering, TG–DTA, SEM, TEM, and FTIR analyses. The SYDZ nanopowders, synthesized with 1Zr4+:4EGM:4CA mole ratio in acidic medium (pH ∼1) at 700 °C, had an average diameter of 15±2 nm. Finally, air plasma spray (APS) coatings were produced from nanostructured SYDZ agglomerated powders.  相似文献   

13.
Hao Tong  Hu-Lin Li  Xiao-Gang Zhang 《Carbon》2007,45(12):2424-2432
A new method of synthesis of highly dispersed Pt nanoparticles with large catalytic surface area on multi-walled carbon nanotubes (MWCNTs) under high-intensity ultrasonic field was developed. The method, with low processing temperature at 25 °C, took only about 5 min. The surface characterization of MWCNTs was carried out by fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy methods. The electrochemical surface area and pore volume of MWCNTs were also examined. The result showed that functional groups of the MWCNTs which favored the high loading and high dispersion of particles and electrochemical surface area of MWCNTs were reinforced in the case of high-intensity ultrasonic field. The Pt/MWCNT catalysts were characterized by energy dispersion X-ray spectra analysis (EDX), transmission electron microscopy (TEM) and X-ray diffraction (XRD) measurements. The prepared Pt nanoparticles were uniformly dispersed on the MWCNT surface. The mean size of Pt particles was 3.4 ± 0.2 nm. The electrocatalytic properties of Pt/MWCNT composites and kinetic characterization for methanol electro-oxidation were investigated by cyclic voltammetry. The Pt/MWCNT catalysts prepared for 5 min in ultrasonic field present excellent electrochemical activities. The schematic of the reaction was also introduced.  相似文献   

14.
Calcium tartrate doped with Ni and/or Co has been used as a catalyst source in the chemical vapor deposition synthesis of carbon nanotubes (CNTs). Thermolysis of doped calcium tartrate in an inert atmosphere was shown to yield Ni, Co or Ni-Co nanoparticles ∼6 nm in diameter dispersed in a calcium oxide matrix. The CNT synthesis was carried out by ethanol vapor decomposition at 800 °C. The structure of the products was characterized by transmission electron microscopy and Raman spectroscopy. It was found that Ni nanoparticles embedded in CaO provide the narrowest diameter distribution of CNTs, while the bimetallic Ni-Co catalyst allows the formation of the thinnest CNTs with the outer diameter of ∼2 nm. This type of CNT is more likely to be responsible for the lowest value of the turn-on field (∼1.8 V/μm) for the emission current detected for the latter sample.  相似文献   

15.
A novel reactive infiltration processing (RIP) technique was employed to infiltrate porous carbon fibre reinforced carbon (C/C) composite hollow tubes with ultra high temperature ceramic (UHTC) particles such as ZrB2. The C/C composite tubes had initial porosity of ∼60% with a bimodal (10 μm and 100 μm) pore size distribution. A slurry with 40-50% ZrB2 solid loading particles was used to infiltrate the C/C tubes. Our approach combines in situ ZrB2 formation with coating of fine ZrB2 particles on carbon fibre surfaces by a reactive processing method. A Zr and B containing diphasic gel was first prepared using inorganic-organic hybrid precursors of zirconium oxychloride (ZrOCl2·8H2O), boric acid, and phenolic resin as sources of zirconia, boron oxide, and carbon, respectively. Then commercially available ZrB2 powder was added to this diphasic gel and milled for 6 h. The resultant hybrid slurry was vacuum infiltrated into the porous hollow C/C tubes. The infiltrated tubes were dried and fired for 3 h at 1400 °C in flowing Ar atmosphere to form and coat ZrB2 on the carbon fibres in situ by carbothermal reaction. Microstructural observation of infiltrated porous C/C composites revealed carbon fibres coating with fine nanosized (∼100 nm) ZrB2 particles infiltrated to a depth exceeding 2 mm. Ultra high temperature ablation testing for 60 s at 2190 °C suggested formation of ZrO2 around the inner bore of the downstream surface.  相似文献   

16.
Surface-functionalized polymeric nanoparticles were prepared by: a) self-assembly of poly(4-vinylbenzocyclobutene-b-butadiene) diblock copolymer (PVBCB-b-PB) to form spherical micelles (diameter: 15-48 nm) in decane, a selective solvent for PB, b) crosslinking of the PVBCB core through thermal dimerization at 200-240 °C, and c) cleavage of the PB corona via ozonolysis and addition of dimethyl sulfide to afford aldehyde-functionalized nanoparticles (diameter: ∼16-20 nm), along with agglomerated nanoparticles ranging from ∼30 to ∼100 nm in diameter. The characterization of the diblock copolymer precursors, the intermediate micelles and the final surface-functionalized crosslinked nanoparticles was carried out by a combination of size exclusion chromatography, static and dynamic light scattering, viscometry, thermogravimetric analysis, 1H NMR and FTIR spectroscopy and transmission electron microscopy.  相似文献   

17.
Formation of ZnO particles by thermal decomposition of zinc acetylacetonate monohydrate in air atmosphere has been investigated using XRD, DTA, FT-IR, and FE-SEM as experimental techniques. ZnO as a single phase was produced by direct heating at ≥200 °C. DTA in air showed an endothermic peak at 195 °C assigned to the ZnO formation and exothermic peaks at 260, 315 and 365 °C, with a shoulder at 395 °C. Exothermic peaks can be assigned to combustion of an acetylacetonate ligand released at 195 °C. ZnO particles prepared at 200 °C have shown no presence of organic species, as found by FT-IR spectroscopy. Particles prepared for 0.5 h at 200 °C were in the nanosize range from ∼20 to ∼40 nm with a maximum at 30 nm approximately. The crystallite size of 30 nm was estimated in the direction of the a1 and a2 crystal axes, and in one direction of the c-axis it was 38 nm, as found with XRD. With prolonged heating of ZnO particles at 200 °C the particle/crystallite size changed little. However, with heating temperature increased up to 500 or 600 °C the ZnO particle size increased, as shown by FE-SEM observation. Nanosize ZnO particles were also prepared in two steps: (a) by heating of zinc acetylacetonate monohydrate up to 150 °C and distillation of water and organic phase, and (b) with further heating of so obtained precursor at 300 °C.  相似文献   

18.
Jin Gyu Park  Chuck Zhang  Ben Wang 《Carbon》2008,46(9):1175-1183
Single-walled carbon nanotube (SWCNT) buckypaper (BP) was exposed to high temperatures with electrical current-driven thermal heating either in the air or a vacuum. High electrical currents generate Joule heating and then cause breakdown of the BP in the air at over 400 °C due to rapid oxidation. In the vacuum, electrical resistive heating can generate temperatures of more than 2000 °C for the samples. Structural changes of SWCNTs after electrical current heating were observed using electron microscopy and Raman spectra. After breakdown of BP, the disorder-induced D-band increased and a smaller diameter related radial-breathing mode was reduced in the high temperature region. Structural transformations of SWCNT to other carbon nanostructures were observed after current-driven high-temperature treatment in the vacuum. In addition, surface-enhanced Raman scattering with intensity enhancement more than ten times was observed in the BP with agglomerated Fe or Ti particles.  相似文献   

19.
Amorphous carbon nanostructures from chlorination of ferrocene   总被引:1,自引:0,他引:1  
The chlorination of ferrocene at different temperature conditions yields several carbon nanostructures, which were studied by means of transmission and scanning electron microscopies. Amorphous carbon nanotubes (α-CNTs) up to 10 μm long with thick walls and ∼15 nm of internal diameter were observed in a sample treated at 200 °C during 30 min. They consisted on ∼90% of carbon, while the remaining 10% consists on iron and chlorine. At this temperature, amorphous carbon bags and open-ended branches were also found. When chlorinating ferrocene at the same temperature but with longer reaction time (180 min), no α-CNTs were formed. At higher temperature (300 °C, 30 min), amorphous carbon bags were found, with lower content of residual chlorine and iron, and presenting thinner walls. In the sample treated at even higher temperature (900 °C, 30 min) the carbon nanobags (wall thickness ∼12 nm) were almost spherical and more graphitic, and without impurities.  相似文献   

20.
Neutron diffraction, Raman spectroscopy, and x-ray diffraction were employed to measure the stresses generated in the ZrB2 matrix and SiC dispersed particulate phase in ZrB2-30 vol% SiC composites produced by hot pressing at 1900 °C. Neutron diffraction measurements indicated that stresses begin to accumulate at ∼1400 °C during cooling from the processing temperature and increased to 880 MPa compressive in the SiC phase and 450 MPa tensile in the ZrB2 phase at room temperature. Stresses measured via Raman spectroscopy revealed the stress in SiC particles on the surface of the composite was ∼390 MPa compressive, which is ∼40% of that measured in the bulk by neutron diffraction. Grazing incidence x-ray diffraction was performed to further characterize the stress state in SiC particles near the surface. Using this technique, an average compressive stress of 350 MPa was measured in the SiC phase, which is in good agreement with that measured by Raman spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号