首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present article reports the development and characterization of carbon nanofiber (CNF)‐incorporated carbon/phenolic multiscale composites. Vapor‐grown CNFs were dispersed homogeneously in to phenolic resin using an effective dispersion route, and carbon fabrics were subsequently impregnated with the CNF‐dispersed resin to develop carbon fiber/CNF/phenolic resin multiscale composites. Mechanical and thermal transmission properties of multiscale composites were characterized. Elastic modulus and thermal conductivity of neat carbon/phenolic and multiscale composites were predicted and compared with the experimental results. It was observed that incorporation of only 1.5 wt % CNF resulted in 10% improvement in Young's modulus, 12% increase in tensile strength, and 36% increase in thermal conductivity of carbon/phenolic composites. Fracture surface of composite samples revealed the formation of stronger fiber/matrix interface in case of multiscale composites than neat carbon/phenolic composites. Enhancement of above properties through CNF addition has been explained, and the difference between the predicted values and experimental results has been discussed. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
Small angle neutron scattering data are compared with given expressions of scattering cross section for isotropic and uniaxially stretched melts containing a large fraction øD of deuterated chains. An expression of the cross section as øD(1 ? øD)f(q), where f(q) is the correlation function of one chain, fits the data for equal molecular weights of hydrogenated and deuterated species. For different molecular weights in the case of isotropic melts an expression is given, which agrees well with the data. The data lie in a scattering vector range of 7.10?2, 10?1 Å; seven values of øD were used for each mixture; the following deuterated and hydrogenated weights19 were mixed: 138 000 and 155 000, 105 000 and 155 000, 620 000 and 675 000. Both the Guinier range and the intermediate range are explored. Possible technical artefacts of high deuteration are discussed, especially multiple scattering which is not observed under normal conditions, and void scattering which is more difficult to avoid.  相似文献   

3.
The incorporation of carbon nanofiber (CNF) into glass fiber (GF) composites is a potential route to extend polymer composite service‐life and enhance mechanical properties. Under nonstatic conditions, only limited information concerning water uptake and contaminant release properties of nanocomposite materials is currently available. Polyester composites containing GF and oxidized CNF were immersed in water for 30 days under nominal pressure at 23 °C, below the polymer's glass‐transition temperature. Water was analyzed and changed every three days to simulate water chemistry regeneration similar to exposures in flowing systems. Composites with oxidized CNF had greater water sorption capacity and leaching rates than CNF‐free composites. The total mass of organic contaminant released correlated with the amount of water sorbed by each composite (r2 = 0.91), although CNF dispersion was found to vary greatly within composites. The greatest and least contaminant release rates were found for the polyester‐CNF and the polyester‐GF composites, respectively. While volatile aromatic resin solvents and stabilizer compounds were detected, their concentrations declined over the 30 day exposure period. We hypothesize that the hydrophilic nature of the oxidized CNF increased the water sorption capacity of the polyester composites. Additional studies are warranted that examine the impact of this phenomenon on composite mechanical and long‐term durability properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43724.  相似文献   

4.
Composites were produced with functionalized carbon nanofibers (CNF) and polyimide (PI) matrix using either in situ polymerization or blending processes. The impact of the composite processing method, CNF surface chemistry, and fiber loadings on the dispersion of fibers and mechanical properties of composites were investigated. Specifically, functionalization of oxidized CNF with a diamine and polyimide oligomer that mimicked the structure of the base polyimide led to improved dispersion of CNF in the matrix polymer. Samples produced using precipitation blending from hot solvent and in situ polymerization exhibited improved dispersion and reduced agglomeration of CNF relative to samples made using direct blending. While SEM images showed poorly dispersed pristine CNF in PI in the form of agglomerations and thick deposition layer on the bottom of composite film, there was clearly better dispersion for functionalized CNFs. Composites produced with functionalized CNF exhibited improvements in modulus, glass transition temperature and tensile strength relative to the base polyimide. POLYM. COMPOS. 35:1473–1485, 2014. © 2013 Society of Plastics Engineers  相似文献   

5.
Interfacial adhesion between carbon fiber and epoxy resin plays an important role in determining performance of carbon–epoxy composites. The objective of this research is to determine the effect of fiber surface treatment (oxidization in air) on the mechanical properties (flexural strength and modulus, shear and impact strengths) of three‐dimensionally (3D) braided carbon‐fiber‐reinforced epoxy (C3D/EP) composites. Carbon fibers were air‐treated under various conditions to improve fiber–matrix adhesion. It is found that excessive oxidation will cause formation of micropits. These micropits are preferably formed in crevices of fiber surfaces. The micropits formed on fiber surfaces produce strengthened fiber–matrix bond, but cause great loss of fiber strength and is probably harmful to the overall performance of the corresponding composites. A trade‐off between the fiber–matrix bond and fiber strength loss should be considered. The effectiveness of fiber surface treatment on performance improvement of the C3D/EP composites was compared with that of the unidirectional carbon fiber–epoxy composites. In addition, the effects of fiber volume fraction (Vf) and braiding angle on relative performance improvements were determined. Results reveal obvious effects of Vf and braiding angle. A mechanism was proposed to explain the experimental phenomena. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1040–1046, 2002  相似文献   

6.
Ernst Hoinkis  Martin Ziehl 《Carbon》2003,41(11):2047-2056
Phenolic resin based activated carbon fibers are widely used as filter materials in industry. We studied the fiber type ACFY-0204-3-18 which is applied to recover 2-propanol from air. The fibers were characterised by measuring the chemical composition, the apparent density, the wide angle X-ray diffraction data, and the sorption isotherms for nitrogen at 77.4 K and 2-propanol at 308.2 K. The porous structure was studied by small-angle neutron scattering. The two-dimensional contour patterns show an anisotropic intensity distribution I(q) at scattering vectors |q|<0.4 nm−1. In this q-range I(q) is perpendicular to the fiber axis due to a refraction of the neutrons by the fibers, and I(q) increases abruptly with decreasing q. At |q|>0.4 nm−1 scattering is isotropic and I(q) shows a weak interference peak due to the presence of micropores. The mean pore size of ∼2 nm was determined by fitting a monodisperse and a polydisperse Percus-Yevick hard sphere model to the experimental I(q) data. The microstructure of ACFY differs basically from the microstructure of polyacrylonitrile and pitch based carbon fibers.  相似文献   

7.
为研究酚醛树脂对玻纤的浸润性能,更好地指导实际生产,考察了两种酚醛树脂和三种玻璃纤维。通过添加稀释剂和分散剂改变树脂体系的表面张力、粘度和树脂对玻纤的动态接触角,采用靶环试验测试了多种树脂体系对三种玻纤的浸润速率,筛选出浸润性能最好的树脂体系和玻璃纤维。研究表明,表面张力越低,粘度越小,树脂与玻纤的动态接触角越小,越有利于提高树脂对玻纤的浸润效果。  相似文献   

8.
Cellulose micro/nanofibers (CNF), prepared from jute fibers were surface treated with methyl methacrylate (MMA) for better dispersion into poly methyl methacrylate (PMMA) matrix. PMMA/cellulose composites were prepared by in situ suspension polymerization technique. The surface treatment of CNF was confirmed by Fourier transform infrared spectroscopy (FTIR) and Nuclear magnetic resonance (NMR) analysis. MMA‐treated cellulose micro/nanofibers (MCNF) demonstrated improved affinity and dispersion in MMA monomer as well as in the PMMA/cellulose composites. Thermal properties of the cellulose composites were analyzed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The glass transition temperature (Tg) of PMMA increased by nearly 19°C in the in situ cellulose composites compared to that of unreinforced PMMA as indicated by DSC. TGA showed increased thermal stability of the cellulose composites. Enhanced tensile properties as well as significantly lower moisture uptake were observed in the in situ prepared PMMA/cellulose composites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39808.  相似文献   

9.
Effects of silica surface treatment on the impregnation process of silica fiber/phenolics composites were studied. Micro‐Wilhelmy method was used to evaluate the surface characterization of silanized silica fibers. The interlaminar shear strength (ILSS) measurements and the void contents of the silica fiber/phenolics composites were also performed. The interactions occurring between silica fiber and the components of phenolic resin solution can affect the contact angle between silica fiber and phenolic solution and the dynamic adsorption behavior of phenolic resin onto silica fiber. There are competitive adsorptions to different extent for phenolic resin and solvent onto silica fibers. Silica fibers as reinforcement treated by silane‐coupling agent, such as γ‐aminopropyl‐triethoxysilane, γ‐glycidoxypropyl‐trimethoxysilane, trimethylchlorosilane, and γ‐methacryloxypropyl‐trimethoxysilane, influence the mechanical interfacial properties of silica fiber/phenolics composites and the uniformity of resin distribution. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

10.
Wonjoo Lee  Peter Kofinas  R.M. Briber 《Polymer》2012,53(14):2942-2948
The structure of poly((2-dimethylamino)ethyl methacrylate)/sodium dodecylsulfate complexes in water was investigated as a function of poly((2-dimethylamino)ethyl methacrylate) concentration at a fixed sodium dodecylsulfate concentration using small angle neutron scattering. When either hydrogenated or deuterated sodium dodecylsulfate was added to poly((2-dimethylamino)ethyl methacrylate) solutions in D2O, a peak was observed in the small angle neutron scattering which was characteristic of charged micelles. This peak shifted to higher q in both cases as poly((2-dimethylamino)ethyl methacrylate) concentration increased, indicating that the size and shape of micelles changed due to favorable interactions between poly((2-dimethylamino)ethyl methacrylate) and sodium dodecylsulfate. The small angle neutron scattering intensity of the micelles in the polymer/surfactant solutions was measured at the condition where poly((2-dimethylamino)ethyl methacrylate) was contrast-matched. It was possible to obtain information about the structure of the micelles using the Hayter–Penfold model. Based on the results from the fit of the SANS data, it was found that partial shielding provided by poly((2-dimethylamino)ethyl methacrylate) monomers being incorporated into the micelle shell significantly influenced both the form factor and the structure factor of micelles in the polymer/surfactant solutions. This led to a decrease in the micelle size and an increase in the number of micelles. It was found that any increased repulsive potential resulting from a smaller distance between the charged micelles was relieved by a decrease in the surface charge.  相似文献   

11.
Novel carbon nanofiber (CNF) ‐filled bismalemide composites were fabricated by a thermokinetic mixing method. The thermal and mechanical properties of composites containing 1 wt % and 2 wt % CNFs were investigated. Thermogravimetric analysis demonstrated that minimal improvement in thermal stability of the nanocomposites was obtained by the addition of CNFs. Dynamic mechanical analysis showed an increase in storage modulus (E′) and glass transition temperature (Tg) upon incorporation of nanofibers. Limiting oxygen index (LOI) has also been found to increase with incorporation of CNFs. Morphological studies of fractured surfaces of the composites has been carried out by scanning electron microscopy to determine the effect of fiber content and dispersion on the failure mechanism. In general, good dispersion was observed, along with agglomeration at some points and some fiber matrix interfacial debonding. A decrease in mechanical strength has been observed and debonding was found as the main failure mechanism. Further research outlook is also presented. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Posidonia oceanica residues were extracted with supercritical CO2 in order to isolate phenolic compounds. The process was optimized by developing a mathematical model based on mass transfer mechanism consisting of adsorption of supercritical fluid on the solid particles, desorption of solute and convective transfer of solute phase along the column. Henry relation between solute concentrations on the surface of the solid (Cs) and in the solid (q) was approximated in order to describe the adsorption/desorption equilibrium. The model parameters such as solid-liquid film mass transfer coefficient (kf), molecular diffusivity coefficient (DAB) and axial dispersion (Dax) were estimated using empirical methods. The linear driving force model was applied to improve the yield of total phenolic acid recovery. The optimum parameters were elicited as 25 MPa, 323.15 K and a co-solvent mass ratio of 20% yielding 34.97 μg per gram of dry feed and the model satisfactorily described the extraction yield which can be used for scale-up purposes.  相似文献   

13.
Despite the much touted mechanical properties of carbon nanotubes, composites reinforced with nanotubes have failed to achieve mechanical properties which rival those present in conventional fiber reinforced polymer composites. This article describes an attempt to bridge this gap. Multi‐walled carbon nanotubes (MWCNT) were synthesized using a chemical vapor deposition method and were dispersed in phenolic resin by both the wet and dry dispersion techniques before molding into composite bars (50 × 5 × 3 mm3). Although no improvement in the mechanical properties of the MWCNT/phenolic composites was observed over the neat resin value when wet mixing dispersion was employed, an improvement of nearly 158% (160 MPa as compared with 62 MPa for neat resin) was achieved in 5 vol% MWCNT containing phenolic resin prepared by the dry mixing. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

14.
高性能酚醛树脂基烧蚀复合材料的研究   总被引:5,自引:1,他引:4  
本文采用DSC、TG和GPC等测试方法对硼酚醛树脂和S-15X酚醛树脂的固化工艺、热失重特性、分子量及其分布进行了表征和对比,在此基础上对比研究了连续玄武岩纤维、S-2高强玻璃纤维、高硅氧纤维、碳纤维增强硼酚醛树脂和S-15X酚醛树脂复合材料的烧蚀性能和弯曲性能,最后考察了脱模剂对硼酚醛树脂复合材料压制工艺的影响。研究结果表明:硼酚醛树脂复合材料的烧蚀性能、弯曲性能都要优于S-15X酚醛树脂复合材料,通过使用PMR、MIRROR GLAZE代替硬脂酸作为外脱模剂,19W RELEASE代替油酸作为内脱模剂,能良好的解决硼酚醛树脂复合材料压制工艺问题。  相似文献   

15.
Crystallization kinetics of short glass and carbon fiber composites of poly(ether ether ketone) (PEEK) under melt-strain conditions have been obtained for the first time, using in-situ wide angle X-ray scattering, and have been correlated to a model based on the Avrami equation in order to enable minimization of the processing time for injection molding of these materials. It has been demonstrated that increased flow rate of the melt in the mold and, consequently, increased shear rate accelerates the crystallization process of PEEK composites, analogous to similar trends observed previously in PEEK resin. Short glass fiber composites of PEEK crystallize slower than the resin under identical processing conditions, while short carbon fiber composites crystallize faster than the resin, except at the highest mold temperatures and the lowest flow rates. A model based on the Avrami equation has been proposed to fit the kinetics data obtained experimentally. The Avrami coefficient has been calculated and Arrhenius plots have been used to predict the crystallization kinetics at temperatures lower than those at which experimental data have been obtained here. Fiber orientation, flexural elastic modulus, and flexural fracture toughness of the composites have also been evaluated.  相似文献   

16.
Three‐dimensional (3D) braided carbon fiber reinforced polyetheretherketone (denoted as CF3D/PEEK) composites with various fiber volume fractions were prepared via hybrid woven plus vacuum heat‐pressing technology and their tribological behaviors against steel counterpart with different normal loads at dry sliding were investigated. Contrast tribological tests with different lubricants (deionized water and sea water) and counterparts made from different materials (epoxy resin, PEEK) were also conducted. The results showed that the incorporation of 3D braided carbon fiber can greatly improve the tribological properties of PEEK over a certain range of carbon fiber volume fraction (Vf) and an optimum fiber loading of ∼54% exists. The friction coefficient of the CF3D/PEEK composites decreased from 0.195 to 0.173, while the specific wear rate increased from 1.48 × 10−7 to 1.78 × 10−7 mm3 Nm−1 with the normal load increasing from 50 to 150 N. Abrasive mechanism was dominated when the composites sliding with GCr15 steel counterpart under dry and aqueous lubrication conditions. Deionized water and sea water lubricants both significantly reduced the wear of the CF3D/PEEK composites. When sliding with neat PEEK counterpart, the CF3D/PEEK composites possess lower friction coefficient than those against epoxy resin and GCr15 steel counterparts. In general, CF3D/PEEK composites possess excellent tribological properties and comprehensive mechanical performance, which makes it become a potential candidate for special heat‐resisting tribological components. POLYM. COMPOS., 36:2174–2183, 2015. © 2014 Society of Plastics Engineers  相似文献   

17.
A strategy based on carbon nanotubes (CNTs)‐containing sizing dispersion has been implemented to fabricate nanocomposite preforms and their hybrid multiscale composites. The state of pristine CNTs and carboxylic acid functionalized CNTs (CNTs–COOH) in sizing dispersion was effectively monitored by on‐line measuring electrical conductivity. The effects of different CNTs coating applied onto glass fabric on wettability of nanocomposite fibrous reinforcement with epoxy matrix were evaluated using scanning electron microscopy and capillary experiment. A CNTs‐COOH loading of 0.5 wt% gave rise to 97% and 30°C increases in the storage modulus (G′) and glass transition temperature of the resulting hybrid composites, respectively. The enhanced thermomechanical properties of the CNTs hybrid composites are closely related to the stable CNTs sizing dispersion and uniform coating onto fiber reinforcement. The mechanism for reinforcing composites through toughening resin region with CNTs desorbing from primary fiber surface during impregnation has been identified. POLYM. COMPOS. 37:979–986, 2016. © 2014 Society of Plastics Engineers  相似文献   

18.
纳米改性碳/酚醛树脂基复合材料性能研究   总被引:1,自引:0,他引:1  
针对碳/酚醛树脂基复合材料层间剪切强度低的缺点,采用纳米填料进行改性。测试了2种纳米填料(纳米碳纤维、碳纳米管)改性后酚醛树脂的热解性能,研究了纳米填料对复合材料力学性能、烧蚀性能以及高温炭化后力学性能的影响,并观察分析了复合材料测试后的微观形貌。研究结果表明,纳米填料改性后,复合材料的力学性能、烧蚀性能均有所改善。其中,纳米碳纤维改性后复合材料的常温层间剪切强度达到24.9 MPa,氧乙炔线烧蚀率为22.75μm/s,质量烧蚀率为23.58 mg/s。纳米碳纤维表面粗糙,与树脂基体的界面强度高,因此其改性后的力学性能和烧蚀性能优于碳纳米管。  相似文献   

19.
玻璃纤维增强酚醛摩阻材料   总被引:2,自引:0,他引:2  
针对玻璃纤维增强酚醛摩阻材料存在的问题,研究分析了不同类型玻纤维增强酚醛树脂、玻纤增强橡胶改性酚醛树脂、下纤增强三聚氰胺腰果壳油改性酚醛树以及混杂纤维增强酚醛树脂摩阻材料的性能,并对摩阻复合材料的发展提出建议。  相似文献   

20.
本文研究了酚醛树脂PE和用酚醛树脂作基体的FRP的泥浆磨蚀。用泥土作填料的基体和玻璃纤维制成的最普通的复合材料表现出非常低的耐磨蚀性,并且由实验得出,玻璃纤维方向和微粒冲击方向形成的角度对损伤影响极大。由此提出,研究讨论填料或增强材料对磨蚀损伤影响的重要性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号