首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 681 毫秒
1.
驰豫型铁电体是很重要的功能材料,其介电性能和极化机制一直是研究的热点。作者通过对掺钛铌镁酸铅系列铁电陶瓷介电、铁电、热电等宏观性能和微观结构详细、系统的实验研究,提出铁电微畴为三方相畸变结构散布于立方钙钛矿母相中,通过类马氏体预相变的位移型形核过程,实现顺电—驰豫型铁电态的弥散相变,进一步通过类马氏体相变,完成驰豫型铁电态无序态分布的微畴向正常铁电态长程序铁电宏畴转变;提出T_1可调整A(B′B″)O_3型复合钙钛矿铁电体B′和B″离子价态和离子半径等不同所产生的内电场和弹性场,使立方母相所承受切应力发生变化,诱发极性微区、铁电微畴随组成变化表现不同活性。对弛豫型铁电体介电谱分析与计算表明,其在介电常数峰值温度Tm附近的介电弛豫过程连续变化,不对应结构突变的相变过程,较接近偶极介质。通过铌锌酸铅基系列铁电陶瓷在准同型相界附近异常特性的研究,进一步揭示弛豫型铁电体中结构特征决定宏观行为的必要性,反映出铁电材料由微观到介观、再到宏观的有趣规律性。在此基础上,对复合钙钛矿弛豫型铁电体偏压介电行为、电致伸缩特性、介电老化行为等进行了系统研究,合理解释了一系列新的实验现象和结果;并对钨青铜结构铌酸锶钡弛豫型铁电陶瓷复介电响应进行了详细的对比分析和讨  相似文献   

2.
Na0.5 Bi0.5 TiO3-K0.5 Bi0.5 TiO3系铁电体的相变研究   总被引:1,自引:0,他引:1  
研究了(Na1-xKx)0.5Bi0.5TiO3体系x分别为0、0.08、0.16和0.20时陶瓷不同频率下的介电温谱,发现材料为弛豫型铁电体,材料的介电谱在室温到500℃的温度范围内存在一个介电常数-温度"台阶",一个介电常数-温度峰和一个介电损耗-温度峰,通过分析陶瓷不同温度下的电滞回线验证陶瓷在升温过程中产生了铁电-反铁电-顺电相变,采用铁电体成分起伏理论和内电场理论解释了这类弛豫型铁电体相变的原因.  相似文献   

3.
采用固相反应法制备了A位复合铁电陶瓷(1-x)Bi0.5(Na0.82K0.18)0.5TiO3-xBiCrO3(BNKT-BCx). 研究了该陶瓷在室温至500℃温度范围内的介电性能. 结果表明该陶瓷的介电温谱存在两个介电反常峰和一个介电损耗峰, 低温介电反常峰温度附近具有明显的介电常数频率依赖性, 但居里峰随频率增加基本不变, 与典型弛豫铁电体的特征不同. 将弛豫铁电体分为本征弛豫和非本征弛豫铁电体, 通过分析极化前和极化后陶瓷的介电温谱, 发现该体系低温介电反常峰温度附近的介电频率依赖性为空间电荷和缺陷偶极子极化引起的非本征弛豫.  相似文献   

4.
Ba1-xSrxTi0.88Sn0.12O3陶瓷结构与介电性能的研究   总被引:2,自引:0,他引:2  
采用高温固相烧结法制备了Ba1-xSrxTi0.88Sn0.12O3(x=0.10,0.20,0.30,0.40,0.50)陶瓷,研究了Sr含量及烧结温度对Ba1-xSrxTi0.88Sn0.12O3陶瓷结构与介电性能的影响.XRD初步分析表明Ba1-xSrxTi0.88Sn0.12O3陶瓷在室温为立方钙钛矿结构.进一步的研究表明Ba1-xSrxTi0.88Sn0.12O3陶瓷的介电性能与对A位、B位进行的离子取代密切相关.随着Sr含量的增加,不同烧结温度下Ba1-xSrxTi0.88Sn0.12O3陶瓷的介电性能下降,相变温度Tc移向低温.尽管在所研究的组分范围内Ba1-xSrxTi0.88Sn0.12O3表现出扩散相变铁电体的特征,但是典型的介电弛豫行为并没有被观察到.  相似文献   

5.
江永长  顾莹  杨秋红  金应秀 《功能材料》2011,42(1):148-150,154
研究了Zr4+离子B位置换改性对(Pb0.5Ca0.5)(Fe0.5Nb0.5)O3陶瓷微波介电性能.实验结果表明,(Pb0.5Ca0.5)(Fe0.5Nb0.5)O3(PCFNZ)陶瓷样品呈现单一斜方钙钛矿相结构.随Zr(4+)离子的置换量增加,PCFNZ陶瓷体系的Qr值和晶粒尺寸逐渐减小;介电常数εr随着置换量增加...  相似文献   

6.
采用溶胶-凝胶工艺成功制备出K0.5Bi0.5TiO3微细粉料,并利用此微粉烧结出成瓷良好的K0.5Bi0.5TiO3陶瓷.用X射线衍射法测定了K0.5Bi0.5TiO3陶瓷粉末室温和高温(600℃)时的点阵常数,确定K0.5Bi0.5TiO3的高温相为立方结构(点群m3m)指标化其衍射线,给出了K0.5Bi0.5TiO3陶瓷粉末的多晶X射线衍射数据.以此X射线衍射方法研究了K0.5Bi0.5TiO3陶瓷粉末的铁电-顺电相变,测定了k0.5Bi0.5TiO3的介电特性.所作测量表明K0.5Bi0.5TiO3可能是一种有序-无序型弛豫铁电体,呈现一级弥散相变特征.这可采用极性微区理论阐释,弛豫特性是由此类材料非均衡性产生的极性微区在逐渐冻结过程中引起的.  相似文献   

7.
采用固相反应法制备了A位复合铁电陶瓷(1-x)Bi0.5(Na0.82K0.18)0.5TiO3-xBiCrO3(BNKT-BCx). 研究了该陶瓷在室温至500℃温度范围内的介电性能. 结果表明该陶瓷的介电温谱存在两个介电反常峰和一个介电损耗峰, 低温介电反常峰温度附近具有明显的介电常数频率依赖性, 但居里峰随频率增加基本不变, 与典型弛豫铁电体的特征不同. 将弛豫铁电体分为本征弛豫和非本征弛豫铁电体, 通过分析极化前和极化后陶瓷的介电温谱, 发现该体系低温介电反常峰温度附近的介电频率依赖性为空间电荷和缺陷偶极子极化引起的非本征弛豫.  相似文献   

8.
铌酸锶钡铁电陶瓷的介电弛豫行为   总被引:8,自引:0,他引:8  
铌酸锶钡Sr1-xBaxNb2O6(0.25<x<075)陶瓷固溶体是典型的钨青铜结构弛豫型铁电体,其介电行为与钙钛矿结构弛豫型铁电体的介电行为极为相似,即射频介电温谱呈现弥散的居里温区.通过对Sr1-xBaxNb2O6(x=0.4、0.5、06)在─170~+400℃的介电温谱进行详细测定;与其热释电测量结果进行对比,发现它们在低温区的介电响应存在一个不同于钙钛矿结构弛豫型铁电体的弛豫过程,高于居里温区的介电响应很好地符合居里-外斯定律.结合钨青铜结构铁电体存在无公度相的特征,初步探讨了钨青铜结构弛豫型铁电体中局域极化的产生、增大和凝聚特点.  相似文献   

9.
Y2O3掺杂(Bi0.5 Na0.5)0.94 Ba0.06 TiO3无铅压电陶瓷的研究   总被引:2,自引:0,他引:2  
采用固相合成法制备了Y2O3掺杂(Bi0.5 Na0.5)0.94 Ba0.06 TiO3无铅压电陶瓷.研究了Y2O3掺杂对(Bi0.5 Na0.5)0.94Ba0.06 TiO3陶瓷晶体结构、介电与压电性能的影响.XRD分析表明,在所研究的组成范围内陶瓷均能够形成纯钙钛矿固溶体.介电常数-温度曲线显示陶瓷具有弛豫铁电体特征,陶瓷的弛豫特征随掺杂的增加更为明显.在Y2O3掺杂量为0.5%时陶瓷的压电常数d33分别为137 pC/N,为所研究组成中的最大值,掺杂量为0.1%时,机电耦合系数kp与kt最大值为0.30,0.47.  相似文献   

10.
毛韦达  赵林 《材料导报》2021,35(24):24001-24005
采用溶胶凝胶煅烧法合成了La0.5 Sr0.5 Co0.8 Mn0.2 O3-δ纳米粉,通过X射线衍射、电子显微镜、X射线光电子能谱和碘定量滴定等测试方法对合成物进行了表征,并以四溴双酚A为模型污染物,考察其催化性能.结果表明,合成的纳米La0.5 Sr0.5 Co0.8 Mn0.2 O3-δ具有钙钛矿R-3c结构,平均晶粒尺寸为40~70 nm.与通氮气煅烧的样品相比,弱氧化煅烧样品的非化学计量氧浓度适中,钙钛矿结构中B位离子平均价态相对较稳定,其催化性能较强且相对较稳定,可再生循环使用四次.  相似文献   

11.
对(Na1/2Bi1/2)TiO3基无铅压电陶瓷的研究现状进行了综述.着重概括了通过元素替代/掺杂手段对NBT陶瓷性能的影响规律.该系统陶瓷具有的强铁电性质与Bi3 密切相关;材料压电性能可通过改性技术进行调节:如通过加入第二组元化合物降低其矫顽场而提高NBT基陶瓷压电性能.总结了(Na1/2Bi1/2)TiO3基无铅压电陶瓷组成的研究思路和方向.  相似文献   

12.
以NaCl-KCl熔盐法制备出了片状的Bi4Ti3O12微晶模板,选用此模板分别采用干法和湿法流延工艺结合RTGG技术制备了(Na0.84K0.16)0.5Bi0.5TiO3无铅压电织构陶瓷。研究了不同工艺条件下获得的织构陶瓷烧结行为、织构度、显微组织结构和电性能的变化规律。结果表明,(Na0.84K0.16)0.5Bi0.5TiO3织构陶瓷的烧成温度范围只有10~20℃,其介电性能、压电性能呈现明显的各向异性,沿垂直于流延方向织构陶瓷的各种电学性能均明显优于平行于流延方向的电学性能,两种流延方法在1150℃烧结所得的(Na0.84K0.16)0.5Bi0.5TiO3织构陶瓷在显微组织结构和电性能方面均表现出最强的各向异性,该织构陶瓷的压电常数d33=134pC/N。  相似文献   

13.
对无铅压电陶瓷0.94[(Na0.96-xKxLi0.04)0.5Bi0.5]TiO3-0.06Ba(Zr0.055Ti0.945)O3的性质随K含量的变化进行了系统研究,获得压电应变常数d33高达185pC/N的0.94[(Na0.80K0.16Li0.04)0.5-Bi0.5]TiO3-0.06Ba(Zr0.055Ti0.945)O3压电陶瓷.随着K掺杂量的增加,该陶瓷材料的介电温谱峰值向右明显移动,其介电峰温度明显升高.  相似文献   

14.
Nao.5 Bio.5 TiO3 -Ko.5 Bi0.5 TiO3系铁电体的相变研究   总被引:7,自引:0,他引:7  
李月明  陈文  徐庆  周静  廖梅松 《功能材料》2004,35(3):341-343
研究了(Na1-xKx)0.5 Bi0.5 TiO3体系x分别为0、0.08、0.16和0.20时陶瓷不同频率下的介电温谱,发现材料为弛豫型铁电体,材料的介电谱在室温到500℃的温度范围内存在一个介电常数-温度“台阶”,一个介电常数-温度峰和一个介电损耗一温度峰,通过分析陶瓷不同温度下的电滞回线验证陶瓷在升温过程中产生了铁电-反铁电-顺电相变,采用铁电体成分起伏理论和内电场理论解释了这类弛豫型铁电体相变的原因。  相似文献   

15.
简述了水热法在国内外的发展现状,重点介绍了目前水热法制备BaTiO3、(K1-xNax)NbO3、Na0.5Bi0.5-TiO3以及Bi4Ti3O12等4种无铅压电陶瓷粉体的工艺过程,及其在制备4种粉体过程中对粉体尺寸、形貌的控制和独特的优势,同时简要评述了近年来微波水热法制备无铅压电陶瓷粉体的新工艺进展,指出水热法在制备无铅压电陶瓷方面具有一定的优势,可以制备出纯度和结晶性高、颗粒分布均匀、尺寸和形貌可控的高性能简单化合物无铅压电陶瓷粉体。下一步研究的重点和难点为合成组分可控的复杂化合物,为真正实现压电陶瓷和器件的无铅化革命作贡献。  相似文献   

16.
TiO2/Bi4 Ti3 O12 hybrids have been widely prepared as promising photocatalysts for decomposing organic contaminations.However,the insufficient visible light absorption and low charge separation efficiency lead to their poor photocatalytic activity.Herein,a robust methodology to construct novel TiO2/Bi4 Ti3 O12/MoS2 core/shell structures as visible light photocatalysts is presented.Homogeneous bismuth oxyiodide(BiOI) nanoplates were immobilized on electrospun TiO2 nanofiber surface by successive ionic layer adsorption and reaction(SILAR) method.TiO2/Bi4 Ti3 O12 core/shell nanofibers were conveniently prepared by partial conversion of TiO2 to high crystallized Bi4 Ti3 O12 shells through a solid-state reaction with BiOI nanoplates,which is accompanied with certain transition of TiO2 from anatase to rutile phase.Afterwards,MoS2 nanosheets with several layers thick were uniform decorated on the TiO2/Bi4 TiO3 O12 fiber surface resulting in TiO2/Bi4 Ti3 O12/MoS2 structures.Significant enhancement of visible light absorption and photo-generated charge separation of TiO2/Bi4 Ti3 O12 were achieved by introduction of MoS2.As a result,the optimized TiO2/Bi4 Ti3 O12/MoS2-2 presents 60% improvement for photodegrading RhB after 120 min irradiation under visible light and 3 times higher of apparent reaction rate constant in compared with the TiO2/Bi4 Ti3 O12.This synthetic method can also be used to establish other photocatalysts simply at low cost,therefore,is suitable for practical applications.  相似文献   

17.
We demonstrate the electrocaloric effect (ECE) of Na0.5Bi0.5TiO3–BaTiO3 (NBT–BT) lead-free ferroelectric ceramics, which were fabricated by the solid-state reaction method. Based on a Maxwell relation, the ECE was characterized via PT curves under different electric fields. The polarization of NBT increases monotonically within the temperature range of 25–145 °C. It indicates that the NBT has an abnormal ECE with a negative temperature change (ΔT140 = −0.33 K at E = 50 kV/cm) opposite to that of the normal ferroelectrics. The 0.92NBT–0.08BT composition near the morphotropic phase boundary has a normal ECE under low electric fields and an abnormal ECE under high electric fields. The abnormal ECE character originates from the relaxor characteristic between ferroelectric and antiferroelectric phases, while the common ECE is always related to the normal ferroelectric–paraelectric phase transition.  相似文献   

18.
A very strong dielectric relaxation was observed in Bi_2BaNb_2O_9 ceramic.The temperature differencebetween the maximum dielectric constant temperatures T_m measured at 1 kHz and 100 kHz is 65℃.which is about 2-4 times that of relaxor ferroelectrics.The possible mechanism of the anomalousdielectric relaxation was discussed.  相似文献   

19.
The heat capacity (C p 0) of the tellurite glasses
$\begin{gathered} (TeO_2 )_{0.70} (ZnO)_{0.15} (Na_2 O)_{0.10} (Bi_2 O_3 )_{0.05} (I), \hfill \\ (TeO_2 )_{0.75} (ZnO)_{0.10} (Na_2 O)_{0.10} (Bi_2 O_3 )_{0.05} (II),and \hfill \\ (TeO_2 )_{0.75} (ZnO)_{0.15} (Na_2 O)_{0.05} (Bi_2 O_3 )_{0.05} (III) \hfill \\ \end{gathered} $\begin{gathered} (TeO_2 )_{0.70} (ZnO)_{0.15} (Na_2 O)_{0.10} (Bi_2 O_3 )_{0.05} (I), \hfill \\ (TeO_2 )_{0.75} (ZnO)_{0.10} (Na_2 O)_{0.10} (Bi_2 O_3 )_{0.05} (II),and \hfill \\ (TeO_2 )_{0.75} (ZnO)_{0.15} (Na_2 O)_{0.05} (Bi_2 O_3 )_{0.05} (III) \hfill \\ \end{gathered}   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号