首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
以Mg-9.5Li-2.56Al-2.58Zn合金为对象,研究其组织形貌及相组成.并利用UTM5305电子万能试验机对其进行了不同应变速率以及不同变形量的室温压缩实验,获得真应力-应变曲线,构建合金的室温变形本构方程.研究压缩前后合金的微观组织和压缩性能演变规律.结果 表明,Mg-9.5Li-2.56Al-2.58Zn...  相似文献   

2.
李文娴 《铸造技术》2014,(7):1411-1413
建立了Mg-9Li-3Al-2.5Sr合金在不同热变形条件下的本构方程,并研究了热变形条件对材料显微组织的影响。结果表明,热变形过程中合金的流变应力与变形速率和变形温度之间的关系可以用本构方程Z=9.23×1011×[sinh(0.002 472 52σ)]3.75描述。材料变形过程中的稳态流变应力可以用双曲正弦函数描述。在高温低应变速率下,当三角晶界处应力集中的速率大于晶界扩散和滑移速率时,将产生裂纹。裂纹不断萌生扩展,最终导致材料失稳。  相似文献   

3.
为了研究Mg-Zn-Zr-Gd合金的热压缩变形行为,采用Gleeble-3500型热模拟试验机,在变形温度为300~400℃,变形速率为0.001~1 s-1条件下对合金进行热压缩实验。分析了在不同的热压缩条件下合金的真应力-真应变曲线,通过引入Z参数建立了相关流变应力本构方程,同时观察了合金的微观组织演变。结果表明:合金在热压缩变形过程中主要发生了动态再结晶,且合金的流变应力随着应变速率降低和温度升高而减小。在低变形温度或高应变速率下进行热压缩变形时,再结晶晶粒比较细小,但是动态再结晶进行不充分,动态再结晶仅仅发生在晶界处且分布不均匀,仍然存在原始大晶粒。随着变形温度的升高和应变速率的降低,再结晶区域明显增加,再结晶晶粒也逐渐长大。根据热加工图分析得到合金最佳的热加工成形工艺区域为:温度为350~400℃,应变速率为0.1~1 s-1。  相似文献   

4.
60NiTi合金具有强度高、耐磨性好等一系列优异的性能。但由于它难热成型,因此大大限制了在工业领域的广泛应用。为了确定60NiTi合金最优的热加工工艺,研究了铸态60NiTi合金在750~1 050℃,0.01~1 s-1变形速率下的热变形行为,并采用包含Arrhenius项的Z参数法构建了高温变形本构方程。结果显示:仅在1 000℃、1 s-1速率下高温变形时60NiTi合金发生了明显的动态再结晶,温度升高能提高60NiTi合金的热成型性能。在高温(1 050℃)大变形速率下(1 s-1)加工60NiTi合金的热成型性能最好。  相似文献   

5.
通过热压缩实验,研究了Incoloy825合金在变形量为60%,温度为950~1150℃和应变速率0.001~1s-1范围内热变形行为。基于Arrhenius方程和Zener-Hollomon参数模型,建立该合金的本构方程模型。采用金相显微镜(OM)和电子背散射衍射(EBSD)技术研究了合金的组织演变规律。结果表明,随着变形温度的升高或应变速率的降低,DRX的百分含量增加。热变形过程中DRX既包括晶界弓起形核机制的不连续动态再结晶(DDRX)也包括渐进式亚晶旋转形核机制的连续动态再结晶(CDRX)。随着变形温度的升高或应变速率的降低DDRX增强而CDRX减弱。此外随着温度的升高或应变速率的降低,低角度晶界逐渐向高角度晶界转化。同时随机分布的Σ3孪晶界趋于均匀化,且对动态再结晶起促进作用。  相似文献   

6.
β基Mg-12Li-3Al-5Zn合金的塑性变形行为   总被引:4,自引:0,他引:4  
研究了一种新的以β相(bcc晶体结构)为基体的Mg-12Li-3Al-5Zn合金,该合金密度为1.51g/cm^3,具有良好的室温塑性变形能力。轧制和轧制后时效状态的拉伸性能比较表明,轧制时效后合金具有高的强度和比强度,以及很高的屈强比。扫描电镜下的原位准静态拉伸试验表明,合金的断裂行为是穿晶韧性断裂。  相似文献   

7.
采用高温等温压缩试验,对Cu?Ni?Si?P合金在应变速率0.01~5?1、变形温度600~800°C条件下的高温变形行为进行了研究,得出了该合金热压缩变形时的热变形激活能Q和本构方程。根据实验数据与热加工工艺参数构建了该合金的热加工图,利用热加工图对该合金在热变形过程中的热变形工艺参数进行了优化,并利用热加工图分析了该合金的高温组织变化。热变形过程中Cu?Ni?Si?P合金的流变应力随着变形温度的升高而降低,随着应变速率的提高而增大,该合金的动态再结晶温度为700°C。该合金热变形过程中的热变形激活能Q为485.6 kJ/mol。通过分析合金在应变为0.3和0.5时的热加工图得出该合金的安全加工区域的温度为750~800°C,应变速率为0.01~0.1 s?1。通过合金热变形过程中高温显微组织的观察,其组织规律很好地符合热加工图所预测的组织规律。  相似文献   

8.
利用单道次等温压缩实验获得了锻态GH4742合金在变形温度为 1020~1150 ℃、应变速率为0.001~1 s-1、真应变为0.65时的真应力-应变曲线,构建了GH4742合金的热变形本构方程和热加工图,并采用SEM、EBSD等研究了热变形过程中微观亚结构以及γ′相的演变规律,建立了变形工艺条件-组织形态差异-性能变化之间的关联性。结果表明:合金的组织性能演化机制与Z参数密切相关,1080 ℃低温变形时,应变速率由0.001 s-1增加至1 s-1后,lnZ值由75.6增加至82.6,热效应增强,小角度晶界比例降低,动态再结晶比例增加,组织发生细化,基体硬度增加;1110 ℃高温变形时,随着应变速率增加,lnZ值由74增加至78.5,位错滑移和晶界迁移减缓,小角度晶界比例增加,动态再结晶比例降低,加工硬化程度增加,基体硬度增加。GH4742合金不发生动态再结晶晶粒粗化的临界lnZ值为73。结合热加工图和变形组织分析得出锻态GH4742合金良好的加工区域为变形温度1110~1150 ℃、应变速率0.01~0.1s-1。  相似文献   

9.
10.
通过热压缩实验研究了经均匀化处理后的GH4141合金在变形温度为1000~1200℃和应变速率为0.01-5 s-1条件下的热变形行为,构建了GH4141合金的热变形本构方程,并分析了热变形过程中微观组织的演变规律。结果表明,GH4141合金的峰值应力和峰值应变均随着变形温度的升高和应变速率的减小而显著降低。当变形温度为1100~1150℃时,由于动态再结晶的发生,动态软化逐渐与加工硬化达到平衡,流变应力基本不变,真应力-真应变曲线趋于平稳状态。基于Zener-Hollomon参数的双曲正弦模型可以很好地描述GH4141合金热变形过程中峰值应力与变形温度和应变速率的关系。GH4141合金热变形过程中的再结晶程度随着变形温度升高、应变速率减小和变形量增加而增加。当变形温度≥1100℃,应变速率为0.01~0.1 s-1,变形量≥50%时,合金发生完全动态再结晶。  相似文献   

11.
研究化学镀液pH值、温度及施镀时间对Mg-12Li-2Al-2Zn合金表面镀镍层组织形貌和性能的影响.结果表明:在镁锂合金表面进行化学镀镍的最佳工艺参数是:pH=7±0.2,温度(80±2)℃,施镀时间50 min.在此工艺条件下,所获镀层厚度13~15μm,显微硬度435 HV左右,镀层结构为Ni-P非晶态.  相似文献   

12.
本文以Mg-8Li-3Al-0.4Ca合金为研究对象,采用金相(OM)显微组织观察、X射线衍射分析(XRD)、扫描电镜(SEM)、能谱分析(EDS)及力学性能测试的分析方法,获得了此合金在同异速比不同压下量和同压下量不同异速比异步轧制后的微观组织及力学性能。研究结果表明:异速比相同时,随着压下量的增大,α-Mg相和β-Li相逐渐沿轧制方向被拉长成纤维组织,屈服强度和抗拉强度增加,延伸率先减小之后上下波动;压下量相同时,随着异速比的增大,α-Mg相纤维组织被破坏,形成竹节状,β-Li相一直为等轴晶形态,因此,屈服强度和抗拉强度都先增加后减小,延伸率先减小后增加到一个稳定的值。  相似文献   

13.
采用Gleeble-3800热模拟试验机对22Cr-32Fe-40Ni合金在变形温度为950~1150℃、应变速率为0.1~10 s-1范围内进行了热模拟压缩试验,对材料在热变形过程中的流变特性和组织演变规律进行了研究。结果表明,在变形温度高于1000℃或应变速率小于1 s-1时,材料的硬化效应和软化效应达到动态平衡;在变形温度低于1000℃或应变速率为10 s-1时,材料以动态再结晶为主的软化效应占主导作用。通过应变硬化率曲线确定了动态再结晶临界条件,基于温度补偿Arrhenius方程建立了22Cr-32Fe-40Ni合金的热变形本构方程,热变形激活能Q为438.339 kJ·mol-1。22Cr-32Fe-40Ni合金适宜的热加工区间为变形温度1040~1150℃,应变速率0.1~0.47 s-1。  相似文献   

14.
GH625合金的热变形行为   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟试验机研究了GH625高温合金在应变速率为0.001~1 s-1、变形温度为1223~1373 K条件下的热变形行为。结果表明:当变形温度一定时,随应变速率的升高,合金的峰值应力σp和稳态流动应力σs及对应的应变εp和εs均升高;当变形速率一定时,随变形温度的升高,σp和σs以及εs均降低,但εp基本保持不变。GH625合金在热压缩变形过程中应变速率的降低和变形温度的升高均有利于动态再结晶的发生;根据应力-应变曲线,通过线性回归获得GH625合金的本构方程。  相似文献   

15.
邢晨  程亮  朱彬  陈逸 《金属热处理》2022,47(10):58-64
为研究马氏体TiAl合金的热变形行为,对Ti-42.1Al-8.3V合金进行1320 ℃油淬,得到马氏体,然后利用Gleeble-1500D热模拟试验机研究了马氏体在变形温度为1000~1150 ℃、应变速率为0.001~1 s-1下的热变形行为。利用背散射电子成像(BSE)和背散射衍射(EBSD)研究了热变形参数对TiAl合金显微组织的影响,通过分析真应力-真应变曲线,结合双曲正弦方程建立了本构方程。结果表明,马氏体TiAl合金的流变应力曲线符合动态再结晶特征,峰值应力随着变形温度的降低和应变速率的增大而增大;通过计算得到n为2.175,变形激活能Q为595.79 kJ/mol,并构建了马氏体TiAl合金的本构方程;在热变形后,TiAl合金中近等边三角形排布的马氏体转变成α2/γ片层结构。随着变形温度的升高和应变速率的减小,α2/γ片层逐步被再结晶晶粒替代,最后在变形温度为1100 ℃、应变速率为0.001 s-1条件下全部转化为等轴晶。另外,随着应变速率的降低和变形温度的升高,晶粒充分长大,逐渐粗化。  相似文献   

16.
为探究Ti-5.5Al-3Nb-2Zr-lMo钛合金热变形过程中的动态热变形行为及组织演变规律,采用Gleeble-1500热模拟实验机进行了热压缩实验(变形温度855~1015℃、应变速率0.001~10 s-1、变形量60%),构建了 Arrhenius型热变形本构方程,并对热压缩后的微观组织和晶界结构进行了分析....  相似文献   

17.
本文对Al-9.39Zn-1.92Mg-1.98Cu合金做等温热模拟压缩实验,变形温度为300 ℃~460 ℃,应变速率为0.001 s-1~10 s-1,变形量为60%。结果表明:变形时,合金的流变应力力随着变形温度的降低或应变速率的增大而增大。由于热变形时存在摩擦影响,对流变应力曲线进行修正.结果发现摩擦修正后的应力值低于实验值,摩擦力对流变应力的影响程度随着温度的降低和应变速率的增大而增大。基于经典的Arrhenius方程,考虑应变量对材料常数(α,n,Q和A)的影响,构建该合金在热变形时的本构方程。评价改进的本构方程预测能力发现流变应力值与实测值吻合度较高,其相关度高达93.5%。  相似文献   

18.
GH761变形高温合金的热变形行为   总被引:2,自引:0,他引:2  
镍基GH761合金热模拟压缩实验表明,当变形温度Td一定时,随应变速率ε的降低,变形峰值应力σp和稳态流动开始应力σs日及与它们对应的应变εp和εs均降低;当应变速率一定时,随Td的升高,σp和σs以及εs均降低,但εp基本不变.细化原始晶粒可提高再结晶形核率,在此基础上降低变形温度和提高变形速率是细化最终晶粒的重要途径.当应变达到完全再结晶时,合金具有最均匀且细小的组织;超过这一应变值,晶粒开始长大.GH761合金的热变形本构方程为:ε=6.5×106σp4.86exp(-461×103/RT).  相似文献   

19.
采用Gleeble-3500热模拟试验机进行等温热压缩实验,分析了GH2907合金在变形温度950℃~1100℃、应变速率0.01s<sub>-1</sub>~10s<sub>-1</sub>、变形量60%条件下的高温流变行为。结果表明:合金的流变应力随着变形温度的升高或应变速率的降低而显著降低。利用Arrhenius双曲正弦方程和Zener-Hollomon参数计算得出合金的热变形激活能Q为463.043kJ.mol<sub>-1</sub>;合金的应力-应变曲线具有明显的动态再结晶(DRX)特征,变形量、变形温度以及应变速率对DRX体积分数均具有显著影响。基于应力-位错关系和DRX动力学,建立了加工硬化-动态回复和动态再结晶两个阶段的机理型本构模型,可用于描述流变应力与应变速率和变形温度之间的关系。误差分析相关系数R为0.987,预测值与实验值吻合良好,可用于表征预测GH2907合金的热变形行为。  相似文献   

20.
Ti8LC合金热变形及其微观组织   总被引:1,自引:0,他引:1  
采用GLEEBLE-1500热模拟机对Ti8LC合金在温度为850~1000 ℃、变形速率为0.001~0.1 s-1、最大变形程度为60%的条件下,进行恒应变速率高温压缩模拟试验研究,分析合金高温变形时流变应力与应变速率及变形温度之间的关系以及组织变化.结果表明:Ti8LC合金流变应力随应变速率的增大而增大,在恒应变速率条件下,真应力水平随温度的升高而降低;在给定的变形条件下,通过回归计算,建立了一种Ti8LC合金的本构方程;根据试验分析,在850~950 ℃温度时变形,主要发生动态再结晶,随着温度的升高,软化机制主要是动态回复.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号