共查询到20条相似文献,搜索用时 15 毫秒
1.
采用聚氯乙烯(PVC)包覆法处理竹原纤维,并将其应用于增强树脂基摩擦材料。通过定速摩擦试验、表面形貌观察及能谱分析、热失重分析等方法探讨PVC包覆处理竹纤维对其增强摩擦材料摩擦学性能的影响。结果表明,竹纤维经过PVC包覆处理后,能显著提高摩擦材料的整体摩擦学性能,尤其是中高温的摩擦因数。PVC溶液质量浓度为20 g/L,处理时间为20 min,材料具有良好的综合摩擦磨损性能。PVC包覆处理后竹纤维表面可形成一层均匀的PVC复合界面膜,使复合材料中竹纤维和树脂基体的界面黏结性能得到改善,令竹纤维在较高温度下仍然能对基体起到增强作用,提高了材料的摩擦磨损性能。 相似文献
2.
离子渗氮和离子渗硫复合处理表面的摩擦学性能 总被引:13,自引:0,他引:13
在45钢离子渗氮表面,用低温郭了渗硫技术形成具有良好固体润滑作用的渗硫层。采用SEM+EDX和XRD研究了渗层的组织结构,采用销盘式磨损试验机在油润滑条件下,对原始、渗氮、渗硫以及渗氮渗硫复合处理表面进行了抗擦伤性能及耐磨性能的系统研究。并采用EDX和AES分析了摩擦表面边界润滑膜的成分。结果表明:渗硫和渗氮处理均只能在低还条件下提高表面的抗擦伤性能。而复合处理能在各种速度条件下显著提高抗擦伤 相似文献
3.
在45钢离子渗氮表面,用低温离子渗硫技术形成具有良好固体润滑作用的渗硫层。采用SEM+EDX和XRD研究了渗层的组织结构。采用销盘式磨损试验机在油润滑条件下对原始、渗氮、渗硫以及渗氮渗硫复合处理表面进行了抗擦伤性能及耐磨性能的系统研究,并采用EDX和AES分析了摩擦表面边界润滑膜的成分。结果表明渗硫和渗氮处理均只能在低速条件下提高表面的抗擦伤性能,而复合处理能在各种速度条件下显著提高抗擦伤性能。复合处理表面的耐磨性也明显优于渗硫和渗氮表面,但其对磨面的磨损却更为严重.甚至高于原始表面。 相似文献
4.
为提高摩擦副之间的摩擦学性能,润滑油添加剂、低摩擦表面以及表面微织构等作为改善表面摩擦学性能的手段已得到国内外研究工作者的广泛关注并取得了一定的成果,而表面微织构复合固体润滑材料技术作为一种集成了已有各种减摩手段优点的复合技术开始被研究。 文中综述了表面微织构与固体润滑材料复合的物理和化学方法;评述了表面微织构几何形状、参数和固体润滑材料种类对复合表面摩擦学性能的影响;分析了表面微织构复合固体润滑材料的减摩机制;最后指出了该复合技术目前尚待解决的问题,并对该技术下一步的发展方向和实际应用进行了展望。 相似文献
5.
采用离子渗氮-渗硫复合处理在Ti-6Al-4V合金的表面形成复合渗层.用X射线衍射仪和扫描电子显微镜对复合渗层的相结构和渗层表面微观形貌进行了分析;并对复合渗层的摩擦学性能进行测试.结果表明,渗氮-渗硫复合处理,可在Ti-6Al-4V合金的表面形成具有良好减摩作用的硫化物层、次表层为具有高硬度的氮化物层和过渡层的理想的摩擦学表面.与未渗硫处理的试样相比,摩擦系数显著降低. 相似文献
6.
目的研究退火处理对DLC薄膜结构及摩擦学性能的影响,并讨论它们之间的相互关系。方法采用平板空心阴极等离子体增强化学气相沉积系统,以C2H2和Ar作为反应气源制备DLC薄膜,将DLC薄膜在大气环境中进行不同温度的退火处理。采用扫描电子显微镜、Raman光谱仪及金相显微镜、薄膜应力测试仪及球-盘摩擦实验仪等,对退火处理前后的DLC薄膜结构、应力及摩擦学性能等进行测试分析。结果在较低温度(?≤300℃)下退火,随退火温度的增加,薄膜中sp3-C的相对含量缓慢减少,结构没有发生明显的变化,内应力降低,薄膜的摩擦系数变化趋势相同,且随退火温度的增加,摩擦系数达到平稳的趋势发生得更早。在400℃退火温度下,DLC薄膜的结构发生了明显的改变,且表面发生了一定的氧化,初始摩擦系数较高,随摩擦时间的延长,薄膜的摩擦系数降低,同时稳定后的摩擦系数(~0.16)较低温退火的DLC薄膜高。在450℃退火温度下,DLC薄膜结构发生了明显的改变,并出现了严重的氧化,摩擦学性能严重恶化并迅速失效。结论退火温度的选择对DLC薄膜的结构及摩擦学性能具有重要影响。 相似文献
7.
目的对比研究铜基石墨复合材料耐磨层(SY-01)以及铜基聚四氟乙烯复合材料耐磨层(SY-02)的各种性能,以期选择最佳耐磨板材料。方法利用扫描电镜及配套的能谱分析仪分析两种耐磨层的微观结构及化学成分,利用压汞法测试耐磨层的孔隙分布以及孔隙率值,并分析两种耐磨层的显微硬度及抗冲击性能。此外,还采用SRV-4高温摩擦磨损试验机测试两种耐磨层的摩擦学性能。结果 SY-01试样耐磨层的孔隙率为28.04%,SY-02试样耐磨层的孔隙率为7.43%。SY-01耐磨层的显微硬度分布比较均匀,平均硬度为52.75HV0.5;SY-02耐磨层不同位置的显微硬度值相差较大,共混区的硬度在32HV0.5左右。相同摩擦工况下,SY-01试样磨痕深度为3.50μm,SY-02试样磨痕深度为11.0μm,约为SY-01试样磨痕深度的3倍。结论 SY-01耐磨层的显微硬度、抗冲击性能以及摩擦学性能均优于SY-02耐磨层。SY-01耐磨层的摩擦磨损机制表现为磨粒磨损和粘着磨损,SY-02耐磨层的摩擦磨损机制主要为磨粒磨损。 相似文献
8.
9.
10.
蒸汽处理是一种高温化学表面处理方法,旨在金属表面上生成一种结合性强、硬度高而又致密的氧化物保护膜,以达到防腐蚀、提高耐磨性、气密性及表面硬度的目的,具有成本低、尺寸精度高、氧化层结合牢固、外表美观、对环境友好等特点.在自行设计的蒸汽处理炉中,对常用的普通碳素45#钢进行蒸汽处理工艺研究,采用划痕法、X-ray、SEM等手段研究蒸汽处理表面氧化膜的结合强度、厚度、成分及相关特性,结果表明:最佳的蒸汽处理工艺是加热温度570℃,保温3h,滴水量0.175mL/min.基体与膜的结合力较传统的发黑工艺强,但蒸汽处理氧化膜的致密度较发黑的差,临界载荷在相同加热温度和滴水量的情况下,随着保温时间的增加却降低. 相似文献
11.
CrSiN纳米复合薄膜的摩擦学性能 总被引:1,自引:0,他引:1
采用中频非平衡反应磁控溅射技术在单晶硅P(111)基材上制备了CrSiN纳米复合薄膜。利用X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、Kevex能谱仪(EDX)、高分辨率透射电子显微镜(HRTEM)和纳米压痕仪对薄膜的相结构、化学成分组成和力学性能进行了测试分析。利用球-盘式摩擦磨损试验机(UMT-2)考察了薄膜和GCr15钢球对磨的摩擦学性能并采用扫描电镜(SEM)观察磨痕形貌。结果表明:CrN薄膜中Si元素的掺杂改变了薄膜晶体结构,所制备的CrSiN复合薄膜为多相复合结构,即nc-CrN/aSi3N4所组成的纳米晶/非晶复合结构。CrSiN纳米复合薄膜的力学性能均优于CrN薄膜,其硬度均高于CrN薄膜的硬度,其中Si原子数分数为12.6%时薄膜的硬度达到最大,对应纳米晶/非晶复合强化。CrSiN纳米复合薄膜的摩擦因数低于CrN薄膜,具有很好的抗磨损性能,并具有一定的润滑作用。 相似文献
12.
13.
NiCo-SiC纳米复合镀层的耐蚀性和摩擦学性能 总被引:2,自引:0,他引:2
用电沉积方法在不锈钢表面制备了NiCo-SiC纳米复合镀层,考察了不同纳米颗粒含量镀液的阴极极化曲线,测定了纳米复合镀层的晶体结构,分析了镀层的表面形貌和磨损形貌.结果表明:加入纳米SiC颗粒后,金属的还原电位发生负移,镀层表面晶粒形貌由针状变为颗粒状;NiCo-SiC纳米复合镀层比NiCo合金镀层具有更好的抗腐蚀性和摩擦学性能;磨损表面形貌显微分析表明合金镀层的磨损机制主要是粘着磨损,表面发生了严重的擦伤和塑性变形,而纳米复合镀层的磨损机制是典型的磨粒磨损. 相似文献
14.
15.
针对压实的羟基磷灰石/壳聚糖复合材料在水中会发生崩裂,采用水蒸汽处理方法,利用XRD、FTIR和SEM对处理前后块体复合材料的组成、结构和断面形态进行分析,考察了温度和处理时间对复合材料压片抗水情况的影响。结果表明,水蒸汽处理可以促进复合材料分子间氢键的形成并有利于HA的Ca2+与壳聚糖的-NH2和-OH离子间络合作用的增强,从而防止羟基磷灰石/壳聚糖复合材料薄片遇水时发生崩裂,抗水性能得到提高,在这一过程中水蒸汽压或温度是主要影响因素。 相似文献
16.
17.
目的探究二硫化钼结构以及尺寸对其宏观摩擦学性能以及滑移机制的影响。方法采用水热法制备了尺寸不同的二硫化钼微球花,并与购买的商业化块状二硫化钼以及单层二硫化钼进行对比,将四种二硫化钼粉末在乙醇中进行分散,采用喷涂的方式在硅基底上制备了四种二硫化钼涂层。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和透射电子显微镜(TEM)对粉末和涂层的形貌、结构进行了表征,并对比研究了涂层的摩擦学性能,通过光学显微镜观察了对偶的形貌,利用SEM和TEM对摩擦界面的结构和形貌进行了研究。结果四种二硫化钼材料均为层状结构的纳米片或微片组成,摩擦系数平稳且均小于0.05。块状二硫化钼寿命最短,摩擦界面覆盖了较少的润滑膜;单层二硫化钼摩擦系数平稳,且寿命最长,摩擦界面由大量纳米片组成,摩擦过程主要是单纯的物理剥离;二硫化钼微球花的寿命介于二者之间,微球花在摩擦力的作用下很容易发生剥离,在摩擦过程中起润滑作用的是剥离的二硫化钼纳米片,摩擦界面覆盖了较厚的致密润滑膜。二硫化钼微球花摩擦后,层间距由0.62 nm增至0.7 nm,层间距的增大有利于良好的润滑。结论尺寸对二硫化钼的滑移机制有影响,从而显著影响其耐磨寿命,层数和尺寸的减小有利于耐磨寿命的提升。 相似文献
18.
为了探究表面织构对动压滑动轴承摩擦学性能的影响,基于自研的摩擦磨损试验机对 BY-BDB 型三维光纤激光织构机加工的表面织构动压滑动轴承摩擦学性能影响进行研究。 通过三维形貌仪、扫描电子显微镜( SEM)以及能谱仪(EDS)对摩擦磨损试验后的微观形貌和摩擦磨损状况进行分析。 研究表明:激光加工会引起表层出现硬化现象且 C 与 O 元素的含量分别增加了 31. 1%与 7. 9%;不同织构参数(面积率 Sp 与深径比 β)与工况(载荷与转速)下的磨损量与摩擦因数呈现先减小后增加的趋势且表面织构对动压滑动轴承的耐摩性能提高了 23%以上。 此外,研究还发现动压滑动轴承摩擦磨损机理是磨粒切削与粘着磨损,而表面织构的减摩机理是能够提高表面耐磨性以及储存磨粒和形成二次动压润滑。 相似文献
19.
目的 研究二硫化钼(MoS2)颗粒粒径对热塑性聚氨酯(TPU)高分子材料的自润滑性能和耐磨性能的影响规律,提升TPU的摩擦学性能。方法 选用4种不同粒径(50、500 nm和5、50 μm)的MoS2颗粒,通过物理共混的方式制备新型MoS2/TPU复合材料,基于RTEC多功能摩擦磨损实验机,开展水润滑条件下的摩擦磨损试验。通过分析比较改性TPU的力学性能、摩擦系数、磨痕轮廓、表面形貌及其摩擦副接触面的元素组成与分布情况,揭示MoS2不同粒径尺寸对TPU的摩擦磨损机理的影响机制。结果 MoS2虽然削弱了TPU的部分力学性能,但摩擦过程中形成的MoS2润滑膜有效降低了TPU的摩擦系数和磨损程度。改性TPU的拉伸强度和断裂伸长率随着MoS2粒径减小呈现先增高、后降低的趋势。500 nm MoS2改性的TPU拉伸强度和断裂伸长率最大,分别为33.80 MPa和334.55%。改性TPU的平均摩擦系数和体积行程磨损率均随着MoS2粒径的减小呈现先降低、后增高的趋势,500 nm MoS2改性TPU的平均摩擦系数和体积行程磨损率最小,当载荷为40 N时分别降低了58.1%和97.8%。长时的摩擦磨损试验表明,Al2O3陶瓷球与500 nm MoS2改性的TPU磨损之后的表面S、Mo元素质量分数之和最高,为34.95%,说明小粒径MoS2更加有利于持续转移并稳定吸附在磨损表面。结论 适当粒径MoS2有利于磨损界面MoS2润滑膜的形成和抑制TPU力学性能的削弱,降低改性TPU摩擦系数和磨损量。该研究可为设计具有优异低摩擦、耐磨损性能的新型水润滑轴承复合材料提供参考。 相似文献