首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: People with type 1 diabetes frequently develop a blunted counterregulatory hormone response to hypoglycemia coupled with a decreased hepatic response to glucagon, and consequently, they have an increased risk of severe hypoglycemia. We have evaluated the effect of insulin lispro (Humalog) versus regular human insulin (Humulin R) on the hepatic glucose production (HGP) response to glucagon in type 1 diabetic patients on intensive insulin therapy with continuous subcutaneous insulin infusion (CSII). RESEARCH DESIGN AND METHODS: Ten subjects on CSII were treated for 3 months with lispro and 3 months with regular insulin in a double-blind randomized crossover study After 3 months of treatment with each insulin, hepatic sensitivity to glucagon was measured in each subject. The test consisted of a 4-h simultaneous infusion of somatostatin (450 microg/h) to suppress endogenous glucagon, regular insulin (0.15 mU x kg(-1) x min(-1)), glucose at a variable rate to maintain plasma glucose near 5 mmol/l, and D-[6,6-2H2]glucose to measure HGP During the last 2 h, glucagon was infused at 1.5 ng x kg(-1) x min(-1). Eight nondiabetic people served as control subjects. RESULTS: During the glucagon infusion period, free plasma insulin levels in the diabetic subjects were 71.7+/-1.6 vs. 74.8+/-0.5 pmol/l after lispro and regular insulin treatment, with plasma glucagon levels of 88.3+/-1.8 and 83.7+/-1.5 ng/l for insulin:glucagon ratios of 2.8 and 3.0. respectively (NS). However, plasma glucose increased to 9.2+/-1.1 mmo/l after lispro insulin compared with 7.1+/-0.9 mmol/l after regular insulin (P < 0.01), and the rise in HGP was 5.7 +/-2.8 micromol x kg(-1) x min(-1) after lispro insulin versus 3.1+/-2.9 micromol x kg(-1) x min(-1) after regular insulin treatment (P=0.02). In the control subjects, HGP increased by 10.7+/-4.2 micromol x kg(-1) x min(-1) under glucagon infusion. CONCLUSIONS: Insulin lispro treatment by CSII was associated with a heightened response in HGP to glucagon compared with regular human insulin. This suggests that insulin lispro increases the sensitivity of the liver to glucagon and could potentially decrease the risk of severe hypoglycemia.  相似文献   

2.
Idiopathic reactive hypoglycemia (IRH) is responsible for postprandial hypoglycemia. Normal insulin secretion and reduced response of glucagon to acute hypoglycemia, but mostly increased insulin sensitivity, represent the metabolic features of this syndrome- The present study has two aims: first, to investigate the fate of glucose utilization inside the cells to assess whether increased glucose disposal in IRH is due to the oxidative and/or nonoxidative pathway; and second, to evaluate glucagon response to prolonged insulin-induced hypoglycemia. In eight patients with IRH and eight normal (N) subjects, we performed two studies on different days: (1) 120-minute euglycemic-hyperinsulinemic (1.0 mU . kg-1 . min-1 regular human insulin) clamp associated with indirect calorimetry; and (2) 180-minute hypoglycemic (2.22 to 2.49 mmo/L achieved through 0.85 mU . kg-1 . min-1 intravenous [IV] regular human insulin) clamp. The results showed an increased insulin-mediated glucose uptake in IRH (9.10 +/- 0.19 v 6.78 +/- 0.18 mg kg-1 . min-1, P < .005). Glucose oxidation was similar in IRH subjects and controls both in basal conditions (1.39 +/- 0.16 v 1.42 +/- 0.15 mg . kg-1 . min-1 and during the clamp studies (2.57 +/- 0.21 v 2.78 +/- 0.26 mg . kg-1 . min-1. In contrast, nonoxidative glucose disposal was significantly higher in IRH than in N subjects (6.53 +/- 0.30 v 4.00 +/- 0.21 mg . kg-1 . min-1, P < .001). During insulinization, fat oxidation was reduced slightly more in IRH than in control subjects. During the hypoglycemic clamp, a significant (P < .01) increase in plasma glucagon concentrations was observed in normal subjects as compared with baseline, whereas no change occurred in IRH patients. In conclusion, in IRH: (1) increased insulin-mediated glucose disposal is due to the increase of nonoxidative glucose metabolism; and (2) glucagon secretion has been confirmed to be inadequate. The increase of insulin sensitivity associated with a deficiency in glucagon secretion can widely explain the occurrence of hypoglycemia in the late postprandial phase.  相似文献   

3.
Despite recent interest in the therapeutic potential of recombinant human insulin-like growth factor-I (rhIGF-I) in the treatment of diabetes mellitus, its mechanism of action is still not defined. We have studied the effects of low-dose bolus subcutaneous rhIGF-I (40 microg/kg and 20 microg/kg) on insulin sensitivity, growth hormone (GH) and glucagon levels in seven young adults with insulin-dependent diabetes mellitus (IDDM) using a randomized double-blind placebo-controlled crossover study design. Each was subjected to a euglycemic clamp (5 mmol/L) protocol consisting of a variable-rate insulin infusion clamp (6:00 PM to 8:00 AM) followed by a two-dose hyperinsulinemic clamp (insulin infusion of 0.75 mU x kg(-1) x min(-1) from 8 to 10 AM and 1.5 mU x kg(-1) x min(-1) from 10 AM to 12 noon) incorporating [6,6 2H2]glucose tracer for determination of glucose production/utilization rates. Following rhIGF-I administration, the serum IGF-I level (mean +/- SEM) increased (40 microg/kg, 655 +/- 90 ng/mL, P < .001; 20 microg/kg, 472 +/- 67 ng/mL, P < .001; placebo, 258 +/- 51 ng/mL). Dose-related reductions in insulin were observed during the period of steady-state euglycemia (1 AM to 8 AM) (40 microg/kg, 48 +/- 5 pmol/L, P = .01; 20 microg/kg, 58 +/- 8 pmol/L, P = .03; placebo, 72 +/- 8 pmol/L). The mean overnight GH level (40 microg/kg, 9.1 +/- 1.4 mU/L, P = .04; 20 microg/kg, 9.6 +/- 2.0 mU/L, P = .12; placebo, 11.3 +/- 1.7 mU/L) and GH pulse amplitude (40 microg/kg, 18.8 +/- 2.9 mU/L, P = .04; 20 microg/kg, 17.0 +/- 3.4 mU/L, P > .05; placebo, 23.0 +/- 3.7 mU/L) were also reduced. No differences in glucagon, IGF binding protein-1 (IGFBP-1), acetoacetate, or beta-hydroxybutyrate levels were found. During the hyperinsulinemic clamp conditions, no differences in glucose utilization were noted, whereas hepatic glucose production was reduced by rhIGF-I 40 microg/kg (P = .05). Our data demonstrate that in subjects with IDDM, low-dose subcutaneous rhIGF-I leads to a dose-dependent reduction in the insulin level for euglycemia overnight that parallels the decrease in overnight GH levels, but glucagon and IGFBP-1 levels remain unchanged. The decreases in hepatic glucose production during the hyperinsulinemic clamp study observed the following day are likely related to GH suppression, although a direct effect by rhIGF-I cannot be entirely discounted.  相似文献   

4.
Previous studies have shown that hypoglycemia may reduce counterregulatory responses to subsequent hypoglycemia in healthy subjects and in patients with diabetes. The effect of hypoglycemia on the hormonal response to a nonhypoglycemic stimulus is uncertain. To test the hypothesis that the cortisol response to corticotropin (ACTH) infusion is independent of antecedent hypoglycemia, 10 healthy subjects received a standard ACTH infusion (0.25 mg Cosyntropin [Organon, West Orange, NJ] intravenously over 240 minutes) at 8:00 AM on day 1 and day 3 and a hypoglycemic insulin clamp study (1 mU/kg/min) at 8:00 AM on day 2. During the hypoglycemic clamp, plasma glucose decreased from 5.0 mmol/L to 2.8 mmol/L for two periods of 120 minutes (mean glucose, 2.9 +/- 0.03 and 2.8 +/- 0.02 mmol/L, respectively) separated by a 60-minute interval of euglycemia (mean glucose, 4.7 +/- 0.01 mmol/L). Seven subjects also had paired control studies in random order during which a 330-minute euglycemic clamp (mean glucose, 5.0 +/- 0.11 mmol/L) instead of a hypoglycemic clamp was performed on day 2. Basal ACTH (4.6 +/- 0.7 v 2.6 +/- 0.4 pmol/L, P < .02) and basal cortisol (435 +/- 46 v 317 +/- 40 nmol/L, P < .02) both decreased from day 1 to day 3 following intervening hypoglycemia. In contrast, with intervening euglycemia, neither basal ACTH (5.9 +/- 1.5 v 4.5 +/- 1.0 pmol/L) nor basal cortisol (340 +/- 38 v 318 +/- 60 nmol/L) were reduced significantly on day 3 compared with day 1. Following interval hypoglycemia, the area under the curve (AUC) for the cortisol response to successive ACTH infusions was increased (4,734 +/- 428 nmol/L over 240 minutes [day 3] v 3,526 +/- 434 nmol/L over 240 minutes [day 1], P < .01). The maximum incremental cortisol response was also significantly increased (805 +/- 63 nmol/L (day 3) v 583 +/- 58 nmol/L (day 1), P < .05). In contrast, the AUC for the cortisol response to successive ACTH infusions with interval euglycemia (3,402 +/- 345 nmol/L over 240 minutes [day 3] v 3,709 +/- 391 nmol/L over 240 minutes [day 1] and the incremental cortisol response (702 +/- 62 nmol/L [day 3] v 592 +/- 85 nmol/L [day 1] were unchanged. Following exposure to intermittent hypoglycemia in healthy humans, fasting morning ACTH and cortisol levels are reduced and the incremental cortisol response to an infusion of ACTH is enhanced. The enhanced cortisol response to exogenous ACTH infusion after intervening hypoglycemia (but not intervening euglycemia) may reflect priming of the adrenal gland by endogenous ACTH produced during the hypoglycemia. These data suggest that adrenal function testing by exogenous ACTH administration is not impaired by prior exposure to hypoglycemia. Moreover, the reduced cortisol response to recurrent hypoglycemia in patients with well-controlled diabetes is not likely the result of impaired adrenal responsiveness.  相似文献   

5.
We evaluated the effect of physiologic hyperinsulinemia (plasma insulin 329 +/- 62 vs 687 +/- 62 pmol/L) on counterregulatory hormone responses in 8 IDDM subjects studied during a 2-hour hypoglycemic clamp study with an equivalent degree of hypoglycemia (plasma glucose 3.1 +/- 0.1 and 3.0 +/- 0.1 mmol/L, respectively). Plasma epinephrine levels were increased by 71% during the last 60 minutes of hypoglycemia in the high insulin study (840 +/- 180 vs 1440 +/- 310 pmol/L, respectively p = 0.006). In addition, plasma cortisol and norepinephrine were also increased in the high insulin study (by 19% and 24% respectively, p < 0.01, for both). Plasma growth hormone and glucagon concentrations were not altered by high dose insulin infusion. In spite of increased epinephrine secretion, the glucose infusion rate required to maintain glucose was 2-fold greater in the high insulin study, and there was greater suppression of lipolysis in that group. We conclude that hyperinsulinemia may enhance counterregulatory hormone secretion in IDDM.  相似文献   

6.
OBJECTIVE: To assess the effects of short-term antecedent hypoglycemia on responses to further hypoglycemia 2 days later in patients with IDDM. RESEARCH DESIGN AND METHODS: We studied eight type I diabetic patients without hypoglycemia unawareness or autonomic neuropathy during two periods at least 4 weeks apart. On day 1, 2 h of either clamped hyperinsulinemic (60 mU.m-2.min-1) hypoglycemia at 2.8 mmol/l or euglycemia at 5.0 mmol/l were induced. Hyperinsulinemic hypoglycemia was induced 2 days later with 40 min glucose steps of 5.0, 4.0, 3.5, 3.0, and 2.5 mmol/l. Catecholamine levels and symptomatic and physiological responses were measured every 10-20 min. RESULTS: When compared with the responses measured following euglycemia, the responses of norepinephrine 2 days after hypoglycemia were reduced (peak, 1.4 +/- 0.4 [mean +/- SE] vs.1.0 +/- 0.3 nmol/l [P < 0.05]; threshold, 3.4 +/- 0.1 vs. 2.9 +/- 0.1 mmol/l glucose [P < 0.01]). The responses of epinephrine (peak, 4.0 +/- 1.4 vs. 3.5 +/- 0.8 nmol/l [P = 0.84]; threshold, 3.8 +/- 0.1 vs. 3.6 +/- 0.1 mmol/l glucose [P = 0.38]), water loss (peak, 194 +/- 34 vs. 179 +/- 47 g-1.m-2.h-1 [P = 0.73]; threshold, 2.9 +/- 0.2 vs. 2.9 +/- 0.2 mmol/l glucose [P = 0.90]), tremor (peak, 0.28 +/- 0.05 vs. 0.37 +/- 0.06 root mean square volts (RMS V) [P = 0.19]; threshold, 3.2 +/- 0.2 vs. 3.1 +/- 0.2 mmol/l glucose [P = 0.70]), total symptom scores (peak, 10.6 +/- 2.1 vs. 10.8 +/- 1.9 [P = 0.95]; threshold, 3.3 +/- 0.2 vs. 3.6 +/0 0.1 mmol/l glucose [P = 0.15]), and cognitive function (four-choice reaction time: threshold, 2.9 +/- 0.2 vs. 3.0 +/- 0.2 mmol/l glucose [P = 0.69]) were unaffected. CONCLUSIONS: The effect on hypoglycemic physiological responses of 2 h of experimental hypoglycemia lasts for 1-2 days in these patients with IDDM . The pathophysiological effect of antecedent hypoglycemia may be of shorter duration in IDDM patients, compared with nondiabetic subjects.  相似文献   

7.
OBJECTIVE: We tested the hypothesis that impaired tissue sensitivity to catecholamines contributes to hypoglycemia unawareness in subjects with type 1 diabetes. RESEARCH DESIGN AND METHODS: A total of 21 subjects with type 1 diabetes underwent a standardized insulin infusion protocol to produce a stepwise decrease in plasma glucose to 45-min plateaus of 4.3, 3.6, 3.0, and 2.3 mmol/l. Glycemic thresholds, maximum responses for adrenergic and neuroglycopenic symptoms, and counterregulatory hormones were determined. Patients were classified as hypoglycemia unaware if the initiation of adrenergic symptoms occurred at a plasma glucose level 2 SD below that of nondiabetic volunteers. beta-Adrenergic sensitivity was measured as the dose of isoproterenol required to produce an increment in heart rate of 25 beats per minute above baseline (I25) in resting subjects. RESULTS: Subjects with type 1 diabetes and hypoglycemia unawareness experienced the onset of adrenergic symptoms at a lower plasma glucose level than did those with awareness (2.5+/-0.1 vs. 3.7+/-0.1 mmol/l, P < 0.001), whereas neuroglycopenic symptoms occurred at similar glucose levels (2.7+/-0.2 vs. 2.8+/- 0.1 mmol/l). The plasma glucose levels for counterregulatory hormone secretion (epinephrine 2.9+/-0.2 vs. 4.1+/-0.2 mmol/l; norepinephrine 2.7+/-0.1 vs. 3.2+/-0.2 mmol/l; cortisol 2.5+/-0.2 vs. 3.3+/-0.2 mmol/l, P < 0.01) were also lower in subjects with unawareness. The maximal epinephrine (1,954+/-486 vs. 5,332+/- 1,059 pmol/l, P < 0.01), norepinephrine (0.73 +/- 0.14 vs. 1.47+/-0.21 nmol/l, P = 0.04), and cortisol (276+/-110 vs. 579+/-83 nmol/l, P < 0.01) responses were reduced in the unaware group. I25 was greater in unaware subjects than in subjects without unawareness (1.5+/-0.3 vs. 0.8+/-0.2 microg), where I25 was not different from that of controls (0.8 +/-0.2 microg). CONCLUSIONS: We conclude that subjects with type 1 diabetes and hypoglycemia unawareness have reduced beta-adrenergic sensitivity, which may contribute to their impaired adrenergic warning symptoms during hypoglycemia.  相似文献   

8.
BACKGROUND: We examined the cholesterol-lowering effects of a proprietary Chinese red-yeast-rice supplement in an American population consuming a diet similar to the American Heart Association Step I diet using a double-blind, placebo-controlled, prospectively randomized 12-wk controlled trial at a university research center. OBJECTIVE: We evaluated the lipid-lowering effects of this red-yeast-rice dietary supplement in US adults separate from effects of diet alone. DESIGN: Eighty-three healthy subjects (46 men and 37 women aged 34-78 y) with hyperlipidemia [total cholesterol, 5.28-8.74 mmol/L (204-338 mg/dL); LDL cholesterol, 3.31-7.16 mmol/L (128-277 mg/dL); triacylglycerol, 0.62-2.78 mmol/L (55-246 mg/dL); and HDL cholesterol 0.78-2.46 mmol/L (30-95 mg/dL)] who were not being treated with lipid-lowering drugs participated. Subjects were treated with red yeast rice (2.4 g/d) or placebo and instructed to consume a diet providing 30% of energy from fat, <10% from saturated fat, and <300 mg cholesterol daily. Main outcome measures were total cholesterol, total triacylglycerol, and HDL and LDL cholesterol measured at weeks 8, 9, 11, and 12. RESULTS: Total cholesterol concentrations decreased significantly between baseline and 8 wk in the red-yeast-rice-treated group compared with the placebo-treated group [(x+/-SD) 6.57+/-0.93 mmol/L (254+/-36 mg/dL) to 5.38+/-0.80 mmol/L (208+/-31 mg/dL); P < 0.001]. LDL cholesterol and total triacylglycerol were also reduced with the supplement. HDL cholesterol did not change significantly. CONCLUSIONS: Red yeast rice significantly reduces total cholesterol, LDL cholesterol, and total triacylglycerol concentrations compared with placebo and provides a new, novel, food-based approach to lowering cholesterol in the general population.  相似文献   

9.
We tested the hypothesis that as few as two weekly brief episodes of superimposed hypoglycemia (i.e., doubling the average frequency of symptomatic hypoglycemia) would reduce physiological and behavioral defenses against developing hypoglycemia and reduce detection of clinical hypoglycemia in patients with type 1 diabetes mellitus (T1DM). Compared with nondiabetic controls, six patients with well-controlled T1DM (HbA1c, 7.5 +/- 0.7% [mean +/- SD]) exhibited absent glucagon responses and reduced epinephrine (P = 0.0027), norepinephrine (P = 0.0007), pancreatic polypeptide (P = 0.0030), and neurogenic symptom (P = 0.0451) responses to hypoglycemia as expected. In these patients, 2 h of induced hypoglycemia (50 mg/dl, 2.8 mmol/l) twice weekly for 1 month, compared in a random-sequence crossover design with an otherwise identical 2 h of induced hyperglycemia (150 mg/dl, 8.3 mmol/l) twice weekly for 1 month, further reduced the epinephrine (P = 0.0001) and pancreatic polypeptide (P = 0.0030) responses, tended to further reduce the norepinephrine and neurogenic symptom responses to hypoglycemia, and reduced cognitive dysfunction during hypoglycemia (P = 0.0271), all assessed in the investigational setting. In the clinical setting, induced hypoglycemia did not alter overall glycemic control, but did reduce the total number of symptomatic hypoglycemic episodes detected by the patients from 49 to 30 per month and lowered the mean +/- SE self-monitored blood glucose level during symptomatic hypoglycemia from 51 +/- 2 mg/dl (2.8 +/- 0.1 mmol/l) to 46 +/- 3 mg/dl (2.6 +/- 0.2 mmol/l) (P < 0.01). It also reduced the proportion of low regularly scheduled self-monitored values that were symptomatic by approximately 33%. Thus as little as doubling the frequency of symptomatic hypoglycemia further reduced both the key epinephrine response and clinical awareness of developing hypoglycemia, changes reasonably expected to increase the risk of severe iatrogenic hypoglycemia in T1DM.  相似文献   

10.
There is much interest in the relationship of hypertension to hyperinsulinemia. Six male volunteers received cortisol, 50 mg orally four times daily, for 5 days. Plasma insulin concentration increased from 11.8 +/- 3.0 mU/L to 16.1 +/- 4.0 mU/L (P = .034). Fasting glucose increased from 4.7 +/- 0.3 to 5.8 +/- 0.1 mmol/L (P = .001). The insulin-to-glucose ratio was unchanged. Octreotide has been reported to lower blood pressure in obese, hyperinsulinemic, hypertensive patients. The hypothesis that cortisol-induced hypertension might be secondary to steroid-induced hyperinsulinemia was examined by determining whether reversal of hyperinsulinemia by octreotide would reverse cortisol-induced hypertension. Five healthy men were given two subcutaneous injections of 0.05 mg of octreotide before and on the fifth day of cortisol administration. Cortisol increased blood pressure, weight, plasma glucose concentration, and white cell count, with decreases in plasma potassium concentration and packed cell volume. Plasma cortisol concentrations were unchanged following octreotide in the control period but decreased after cortisol treatment. Insulin concentrations were reduced profoundly after octreotide, both in the control period (12.5 +/- 3.7 mU/L, falling to 1.1 +/- 0.3 mU/L at 30 min) and on cortisol (22.3 +/- 4.5 to 2.3 +/- 0.5 mU/L at 30 min). Octreotide did not lower pressure before or after cortisol treatment. Thus, octreotide was effective in lowering plasma insulin concentrations but di not lower blood pressure in normal subjects with cortisol-induced hypertension. These data do not support the notion that steroid-induced hyperinsulinemia is responsible for steroid-induced hypertension.  相似文献   

11.
Subjects with poorly controlled type 2 diabetes are both hyperglycemic and insulin resistant. To determine whether short term restoration of normoglycemia improves insulin action, hyperinsulinemic (approximately 300 pmol/L) euglycemic clamps were performed in diabetic subjects after either overnight infusion of saline or overnight infusion of insulin in amounts sufficient to maintain euglycemia throughout the night. Fasting glucose concentrations (5.2 +/- 0.2 vs. 11.9 +/- 1.4 mmol/L; P < 0.01) and rates of endogenous glucose production (13.0 +/- 1.1 vs. 18.6 +/- 1.6 mumol/kg.min; P < 0.05) were both lower after overnight insulin than overnight saline. Insulin-induced stimulation of glucose uptake (to 34.9 +/- 6.8 vs. 28.8 +/- 3.4 mumol/kg.min; P = 0.2) and inhibition of free fatty acids (to 0.13 +/- 0.03 vs. 0.12 +/- 0.04 mmol/L; P = 0.6) did not differ after overnight saline and overnight insulin. In contrast, endogenous glucose production during the final hour of the hyperinsulinemic clamps (i.e. when glucose concentrations were the same) remained higher (P = 0.05) after overnight saline than after overnight insulin (5.5 +/- 1.5 vs. 0.02 +/- 1.4 mumol/kg.min). Thus, acute restoration of euglycemia by means of an overnight insulin infusion improves hepatic (and perhaps renal) but not extrahepatic insulin action.  相似文献   

12.
Glucagon causes transient hyperglycemia and persistent hypoaminoacidemia, but the mechanisms of this action are unclear. To address this question, the present study measured the effects of glucagon on glucose, leucine, phenylalanine, and glutamine kinetics. Seven healthy subjects each underwent three pancreatic clamp studies (octreotide 30 ng/kg/min, insulin 0.15 mU/kg/min, and glucagon 1.4 ng/kg/min) lasting 7 hours. During the last 3.5 hours of the studies, glucagon infusion was either unchanged (study 0) or increased to 4 and 7 ng/kg/min (studies 1 and 2). The higher glucagon infusion rates increased the glucagon concentration by 50% and 100%, respectively. [6,6-(2)H2]glucose, [2-(15)N]glutamine, 2H5-phenylalanine, and 2H3-leucine were infused to quantify the respective fluxes. Glucagon transiently increased glucose concentrations by stimulating glucose production, which peaked in 15 minutes to 3.82 +/- 0.36 and 4.21 +/- 0.33 mg/kg/min in studies 1 and 2 and then returned to the postabsorptive levels. Glucagon decreased the glutamine concentration (-10% +/- 2% and -22% +/- 2% in studies 1 and 2 v study 0, P < .05), because glutamine uptake became greater than glutamine release (balance from -1.9 +/- 0.9 in study 0 to -8.1 +/- 1.1 and -13.6 +/- 1.0 micromol/kg/h in studies 1 and 2, P < .01). Glucagon decreased the leucine concentration (-11% +/- 3% in study 2 v study 0, P < .02) and caused a small increment in proteolysis (+6% in study 2 v study 0, P < .01) that was related to the decrement in glutamine concentrations. Phenylalanine kinetics were not significantly affected. These results show that glucagon promotes the uptake of gluconeogenic substrates but does not increase their release, suggesting that glucagon-induced hyperglycemia is short-lived because glucagon fails to provide more fuel for gluconeogenesis. The small increase in proteolysis and the depletion of circulating glutamine prove that physiologic hyperglucagonemia can contribute to protein catabolism.  相似文献   

13.
The effect of glucagon-like peptide-1 (GLP-1) on hepatic glucose production and peripheral glucose utilization was investigated with or without infusion of somatostatin to inhibit insulin and glucagon secretion in 13 healthy, non-diabetic women aged 59 years. After 120 min 3-(3)H-glucose infusion, GLP-1 was added (4.5 pmol kg(-1) bolus + 1.5 pmol kg(-1) min(-1)). Without somatostatin (n = 6), GLP-1 decreased plasma glucose (from 4.8 +/- 0.2 to 4.2 +/- 0.3 mmol L(-1), P = 0.007). Insulin levels were increased (48 +/- 3 vs. 243 +/- 67 pmol L(-1), P = 0.032), as was the insulin to glucagon ratio (P = 0.044). The rate of glucose appearance (Ra) was decreased (P = 0.003) and the metabolic clearance rate of glucose (MCR) was increased during the GLP-1 infusion (P = 0.024 vs. saline). Also, the rate of glucose disappearance (Rd) was reduced during the GLP-1 infusion (P = 0.004). Since Ra was reduced more than Rd, the net glucose flow was negative, which reduced plasma glucose. Somatostatin infusion (500 microg h(-1), n = 7) abolished the effects of GLP-1 on plasma glucose, serum insulin, insulin to glucagon ratio, Ra, Rd, MCR and net glucose flow. The results suggest that GLP-1 reduces plasma glucose levels mainly by reducing hepatic glucose production and increasing the metabolic clearance rate of glucose through indirectly increasing the insulin to glucagon ratio in healthy subjects.  相似文献   

14.
Effects of methyltestosterone on insulin secretion and sensitivity in women   总被引:2,自引:0,他引:2  
The frequent coexistence of hyperandrogenism and insulin resistance is well established; however, whether a cause and effect relationship exists remains to be established. In this study we tested the hypothesis that short-term androgen administered to women would induce insulin resistance. To test this hypothesis, regularly menstruating, nonobese women were studied before and during methyltestosterone administration (5 mg tid for 10-12 days) by the hyperglycemic (n=8) and euglycemic, hyperinsulinemic (n=7) clamp techniques. Short-term methyltestosterone administration had no significant effects on the fasting levels of glucose, insulin, c-peptide, glucagon, or glucose turnover. During the hyperglycemic clamp studies, the mean glucose level during the final hour was 203+/-2 and 201+/-1 mg/dL in the methyltestosterone and control studies, respectively. The insulin response to this hyperglycemic challenge was slightly but not significantly greater during methyltestosterone treatment (first phase 59+/-8 vs. 50+/-8 microU/mL in controls; second phase 74+/-9 vs. 67+/-9 microU/mL in controls; total insulin response 133+/-16 vs. 117+/-15 microU/mL in controls). In spite of this, glucose uptake was reduced from the control study value of 10.96+/-1.11 to 7.3+/-0.70 mg/kg/min by methyltestosterone (P < 0.05). The ratio of glucose uptake per unit of insulin was also significantly reduced from a control study value of 14.3+/-1.4 to 9.4+/-1.3 mg/kg/min per microU/mL x 100 during methyltestosterone administration. In the euglycemic hyperinsulinemic clamp studies, insulin was infused at rates of 0.25 and 1.0 mU/kg/min to achieve insulin levels of approximately 25 and 68 microU/mL, respectively. During low-dose insulin infusion, rates of endogenous hepatic glucose production were equivalently suppressed from basal values of 2.37+/-0.29 and 2.40+/-0.27 mg/kg/min to 0.88+/-0.25 and 0.77+/-0.26 mg/kg/min in the methyltestesterone and control studies respectively. Whole body glucose uptake during low-dose insulin infusion was minimally affected. During the high-dose insulin infusion, endogenous hepatic glucose production was nearly totally suppressed in both groups. However, whole body glucose uptake was reduced from the control value of 6.11+/-0.49 mg/kg/min to 4.93+/-0.44 mg/kg/min during methyltestosterone administration (P < 0.05). Our data demonstrate that androgen excess leads to the development of insulin resistance during both hyperglycemic and euglycemic hyperinsulinemia. These findings provide direct evidence for a relationship between hyperandrogenemia and insulin resistance, and its associated risk factors for cardiovascular disease.  相似文献   

15.
It is generally believed that glucose production (GP) cannot be adequately suppressed in insulin-treated diabetes because the portal-peripheral insulin gradient is absent. To determine whether suppression of GP in diabetes depends on portal insulin levels, we performed 3-h glucose and specific activity clamps in moderately hyperglycemic (10 mM) depancreatized dogs, using three protocols: (a) 54 pmol.kg-1 bolus + 5.4 pmol.kg-1.min-1 portal insulin infusion (n = 7; peripheral insulin = 170 +/- 51 pM); (b) an equimolar peripheral infusion (n = 7; peripheral insulin = 294 +/- 28 pM, P < 0.001); and (c) a half-dose peripheral infusion (n = 7), which gave comparable (157 +/- 13 pM) insulinemia to that seen in protocol 1. Glucose production, use (GU) and cycling (GC) were measured using HPLC-purified 6-[3H]- and 2-[3H]glucose. Consistent with the higher peripheral insulinemia, peripheral infusion was more effective than equimolar portal infusion in increasing GU. Unexpectedly, it was also more potent in suppressing GP (73 +/- 7 vs. 55 +/- 7% suppression between 120 and 180 min, P < 0.001). At matched peripheral insulinemia (protocols 2 and 3), not only stimulation of GU, but also suppression of GP was the same (55 +/- 7 vs. 63 +/- 4%). In the diabetic dogs at 10 mM glucose, GC was threefold higher than normal but failed to decrease with insulin infusion by either route. Glycerol, alanine, FFA, and glucagon levels decreased proportionally to peripheral insulinemia. However, the decrease in glucagon was not significantly greater in protocol 2 than in 1 or 3. When we combined all protocols, we found a correlation between the decrements in glycerol and FFAs and the decrease in GP (r = 0.6, P < 0.01). In conclusion, when suprabasal insulin levels in the physiological postprandial range are provided to moderately hyperglycemic depancreatized dogs, suppression of GP appears to be more dependent on peripheral than portal insulin concentrations and may be mainly mediated by limitation of the flow of precursors and energy substrates for gluconeogenesis and by the suppressive effect of insulin on glucagon secretion. These results suggest that a portal-peripheral insulin gradient might not be necessary to effectively suppress postprandial GP in insulin-treated diabetics.  相似文献   

16.
OBJECTIVE: To investigate the acute effects of glibenclamide and glucagon-like peptide I (GLP-I) and their combination in perfused isolated rat pancreas and in patients with secondary failure to sulfonylureas. RESEARCH DESIGN AND METHODS: Rat islets were perfused with 10 nmol/l GLP-I in combination with 2 mumol/l glibenclamide. In human experiments, GLP-I (0.75 pmol. kg-1.min-1) was given as a continuous infusion during 240 min, while glibenclamide (3.5 mg) was administered orally. Eight patients participated in the study (age 57.6 +/- 2.7 years, BMI 28.7 +/- 1.5 kg/m2, mean +/- SE). In all subjects, blood glucose was first normalized by insulin infusion administered by an artificial pancreas (Biostator). RESULTS: GLP-I increased the insulinotropic effect of glibenclamide fourfold in the perfused rat pancreas. In human experiments, treatment with GLP-I alone and in combination with glibenclamide significantly decreased basal glucose levels (5.1 +/- 0.4 and 4.5 +/- 0.1 vs. 6.0 +/- 0.3 mmol/l, P < 0.01), while with only glibenclamide, glucose concentrations remained unchanged. GLP-I markedly decreased total integrated glucose response to the meal (353 +/- 60 vs. 724 +/- 91 mmol.l-1. min-1, area under the curve [AUC] [-30-180 min], P < 0.02), whereas glibenclamide had no effect (598 +/- 101 mmol.l-1. min-1, AUC [-30-180 min], NS). The combined treatment further enhanced the glucose lowering effect of GLP-I (138 +/- 24 mmol. l-1.min, AUC [-30-180 min], P < 0.001). GLP-I, glibenclamide, and combined treat-stimulated meal-induced insulin release as reflected by insulinogenic indexes (control 1.44 +/- 0.4; GLP-I 6.3 +/- 1.6, P < 0.01; glibenclamide 6.8 +/- 2.1, P < 0.01; combination 20.7 +/- 5.0, P < 0.001). GLP-I inhibited basal but not postprandial glucagon responses. Using paracetamol as a marker for gastric emptying rate of the test meal, treatment with GLP-I decreased gastric emptying at 180 min by approximately 50% compared with the control subjects (P < 0.01). CONCLUSIONS: In acute experiments on overweight patients with NIDDM, GLP-I exerted a marked antidiabetogenic action on the basal and postprandial state. The peptide stimulated insulin, suppressed basal glucagon release, and prolonged gastric emptying. The glucose-lowering effect of GLP-I was further enhanced by glibenclamide. This action may be at least partially accounted for by a synergistic effect of these two compounds on insulin release. Glibenclamide per se enhanced postprandial but not basal insulin release and exerted a less pronounced antidiabetogenic effect compared with GLP-I.  相似文献   

17.
BACKGROUND: The Veterans Affairs Cooperative Study in Type II Diabetes Mellitus prospectively studied insulin-treated patients with type 2 (non-insulin-dependent) diabetes mellitus, achieving 2.1% glycosylated hemoglobin separation between intensive- and standard-treatment arms (P<.001) for 2 years. OBJECTIVE: To assess the effect of intensive therapy on serum fibrinogen and lipid levels, compared with standard treatment. METHODS: One hundred fifty-three male subjects with type 2 diabetes mellitus and who required insulin treatment were recruited from 5 Veterans Affairs medical centers. The subjects were divided into intensive- and standard-treatment arms for a randomized prospective study. Dyslipidemia was managed identically in both arms (diet, drugs). Fibrinogen levels and lipid fractions were measured in the full cohort. Lipid fractions are separately reported in patients not treated with hypolipidemic agents. RESULTS: There were no baseline differences between arms. Fibrinogen levels rose in the intensive-treatment arm at 1 year (from 3.34+/-0.12 to 3.75+/-0.15 g/L; P<.001) but returned to baseline at 2 years (3.47+/-0.12 g/L). There was no change in the standard-treatment arm. Triglyceride levels decreased in the intensive-treatment arm from 2.25+/-0.27 to 1.54+/-0.14 mmol/L (199+/-24 to 136+/-12 mg/ dL) at 1 year (P = .004) and to 1.74+/-0.18 mmol/L (154+/-16 mg/dL) at 2 years (P = .03); there was no change in the standard-treatment arm. Cholesterol levels decreased in the intensive-treatment arm at 1 year from 5.4+/-0.21 to 4.99+/-0.13 mmol/L (207+/-8 to 193+/-5 mg/dL) (P = .02); there was no change in the standard-treatment arm. Levels of low- and high-density lipoprotein cholesterol decreased in the standard-treatment arm only by 2 years, from 3.44+/-0.13 to 3.16+/-0.10 mmol/L (133+/-5 to 122+/-4 mg/ dL) (P =.02) and from 1.10+/-0.03 to 1.00+/-0.03 mmol/L (42+/-1 to 38+/-1 mg/dL) (P<.001) for low-density and high-density lipoprotein cholesterol, respectively. Levels of apolipoprotein B decreased in both treatment arms (P<.001), and apolipoprotein A1 levels decreased in the standard-treatment arm (P<.01). Lipoprotein (a) levels did not change in either treatment arm. Lipid results were essentially identical whether examined in the full cohort or excluding those patients receiving hypolipidemic agents. CONCLUSIONS: Intensive insulin therapy led to a potentially beneficial reduction in serum triglyceride levels and preservation of high-density lipoprotein cholesterol and apolipoprotein A1 levels. However, it caused transient elevation in plasma fibrinogen levels, a possible thrombogenic effect.  相似文献   

18.
Individuals with insulin-dependent diabetes mellitus (IDDM or type 1 diabetes) are deficient in both insulin and amylin, peptides secreted by the beta cell. We have investigated the effects of amylin replacement therapy employing the human amylin analogue, pramlintide (25, 28, 29-pro-human amylin, previously referred to as AC137), upon the responses to a standardized insulin infusion (40 mU. kg-1. h-1) for 100 min and a liquid Sustacal meal (360 kcal) in 84 healthy IDDM patients. Following baseline evaluations, patients were randomly assigned to receive subcutaneous injections of placebo, 30, 100 or 300 micrograms pramlintide 30 min before meals for 14 days. There was no meaningful difference between adverse events reported by the 30-micrograms pramlintide and the placebo groups, but ten subjects withdrew due to nausea, eight of these in the 300-micrograms dose group. Peak plasma pramlintide concentrations for the 30-micrograms group were 21 +/- 3 and 29 +/- 5 pmol/l on Days 1 and 14, respectively. These values are similar to postprandial plasma amylin concentrations in normal volunteers. The plasma glucose, free insulin, glucagon, epinephrine and norepinephrine concentrations during the insulin infusion test before and after therapy were identical in each of the group. Prior to pramlintide therapy, Sustacal ingestion produced a 4.0-4.8 mmol/l rise in plasma glucose concentrations in each of the groups. Pramlintide therapy reduced postprandial hyperglycaemia as reflected by the 3-h incremental AUCglucose (AUCglucose above or below fasting glucose concentration) Day 1 vs Day 14: 30 micrograms, 322 +/- 92 vs -38 +/- 161 mmol/l.min, p = 0.010; 100 micrograms, 317 +/- 92 vs -39 +/- 76 mmol/l.min, p = 0.001; and 300 micrograms, 268 +/- 96 vs -245 +/- 189 mmol/l.min, p = 0.077. Thus, pramlintide therapy with these regimens did not appear to impair either in vivo insulin action or the counter-regulatory response to hypoglycaemia but did show a clear effect of blunting postprandial hyperglycaemia following a standardized meal.  相似文献   

19.
The contribution of gluconeogenic precursors to renal glucose production (RGP) during insulin-induced hypoglycemia was assessed in conscious dogs. Ten days after surgical placement of sampling catheters in the right and left renal veins and femoral artery and an infusion catheter in the left renal artery, systemic and renal glucose and glycerol kinetics were measured with peripheral infusions of [6-3H]glucose and [2-13C]glycerol. Renal blood flow was determined with a flowprobe, and the renal balance of lactate, alanine, and glycerol was calculated by arteriovenous difference. After baseline, six dogs received 2-h simultaneous infusions of peripheral insulin (4 mU x kg(-1) x min(-1)) and left intrarenal [6,6-2H]dextrose (14 micromol x kg(-1) x min(-1)) to achieve and maintain left renal normoglycemia during systemic hypoglycemia. Arterial glucose decreased from 5.3 +/- 0.1 to 2.2 +/- 0.1 mmol/l; insulin increased from 46 +/- 5 to 1,050 +/- 50 pmol/l; epinephrine, from 130 +/- 8 to 1,825 +/- 50 pg/ml; norepinephrine, from 129 +/- 6 to 387 +/- 15 pg/ml; and glucagon, from 52 +/- 2 to 156 +/- 12 pg/ml (all P < 0.01). RGP increased from 1.7 +/- 0.4 to 3.0 +/- 0.5 (left) and from 0.6 +/- 0.2 to 3.2 +/- 0.2 (right) micromol x kg(-1) x min(-1) (P < 0.01). Whole-body glycerol appearance increased from 6.0 +/- 0.5 to 7.7 +/- 0.7 micromol x kg(-1) x min(-1)(P < 0.01); renal conversion of glycerol to glucose increased from 0.13 +/- 0.04 to 0.30 +/- 0.10 (left) and from 0.11 +/- 0.03 to 0.25 +/- 0.05 (right) micromol x kg(-1) x min(-1), (P < 0.05). Net renal gluconeogenic precursor uptake increased from 1.5 +/- 0.4 to 5.0 +/- 0.4 (left) and from 0.9 +/- 0.2 to 3.8 +/- 0.4 (right) micromol x kg(-1) x min(-1) (P < 0.01). Renal lactate uptake could account for approximately 40% of postabsorptive RGP and for 60% of RGP during hypoglycemia. These results indicate that gluconeogenic precursor extraction by the kidney, particularly lactate, is stimulated by counterregulatory hormones and accounts for a significant fraction of the enhanced gluconeogenesis induced by hypoglycemia.  相似文献   

20.
Hypothyroidism leads to an increase of plasma low-density lipoprotein (LDL) cholesterol levels. Oxidation of LDL particles changes their intrinsic properties, thereby enhancing the development of atherosclerosis. T4 has three specific binding sites on apolipoprotein B; furthermore it inhibits LDL oxidation in vitro. We therefore hypothesized that T4 deficiency not only results in elevated LDL-cholesterol levels but also in increased LDL oxidation. Ten patients with overt hypothyroidism were studied when untreated (TSH 76 +/- 13 mU/L, T4 40 +/- 6 nmol/L) and again when they were euthyroid for at least 3 months during T4 treatment (TSH 2.7 +/- 0.5 mU/L, T4 115 +/- 11 nmol/L). Plasma lipids and lipoproteins and the oxidizability and chemical composition of LDL were determined. The transition from the hypothyroid to the euthyroid state was associated with a decrease (mean +/- SE) of plasma total cholesterol (5.8 +/- 0.3 vs. 4.8 +/- 0.2 mmol/L, P < 0.005), LDL cholesterol (3.8 +/- 0.3 vs. 2.9 +/- 0.2 nmol/L, P < 0.005) and apolipoprotein B (1.2 +/- 0.1 vs. 0.9 +/- 0.1 g/L, P < 0.005); plasma high-density lipoprotein cholesterol, apolipoprotein A-1, and triglycerides did not change. The actual content of dienes in LDL particles was increased in hypothyroidism, with a decrease after T4 suppletion [median (range) = 257 (165-346) vs. 188 (138-254) nmol/mg LDL protein, P < 0.005; reference range 140-180]. The lag time, an estimate of the resistance of LDL against oxidation in vitro, was shortened when hypothyroid but normalized after T4 treatment [29 (19-90) vs. 77 (42-96) min, P < 0.005; reference range 67-87]. The density, the relative fatty acid content, and the vitamin E content of LDL particles did not change. In conclusion, the hypothyroid state is not only associated with a quantitative increase of LDL particles, but it also changes their quality by increasing LDL oxidizability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号