首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of concentration of tapioca maltodextrin with three different DE values on the viscosity, depletion attraction potential (Wdep), rate of coalescence (Kc), and creaming rate of oil‐in‐water emulsion have been investigated. The relative viscosity and Wdep increased with increasing maltodextrin concentration. Critical flocculation concentration (CFC) of emulsions containing maltodextrin with DE of 16 (DE16), 12 (DE12), and 9 (DE9) were 11, 7, and 5.5 wt%, respectively. At maltodextrin concentrations below CFC, there was no change in Kc and no creaming was observed. At maltodextrin concentrations above CFC, an increase in the concentration of DE9 and DE12 resulted in an increase in Kc until it reached a constant value. Kc values remained to be constant in the concentration range between 30 and 40 wt% for DE9 and that between 35 and 45 wt% for DE12. Further increasing in concentration of DE9 and 12 decreased Kc. Kc of DE16 monotonically increased with increasing concentration from CFC to 50 wt%. The rate of creaming decreased with increasing maltodextrin concentration over CFC until it reached zero. Creaming was not observed at maltodextrin concentrations more than 35 wt% for DE9 and 40 wt% for DE12 whereas DE16 showed creaming at all concentrations above CFC. A maltodextrin with a lower DE inhibited creaming more efficiently than maltodextrin with a higher DE because of higher viscosities. The Kc tended to increase with decreasing DE because the strength of interaction between oil droplets increased.  相似文献   

2.
ABSTRACT: The creaming velocity, apparent viscosity, and ultrasonic attenuation spectra (1 to 50 MHz) of 5 wt% n hexadecane oil-in-water emulsions containing different droplet radii (r = 0.15 - 0.7 μm), biopolymer types (gum arabic or modified starch), and biopolymer concentrations (0 to 2.5 wt%) were measured. Depletion flocculation was observed in the emulsions when the nonabsorbed biopolymer concentration exceeded a critical concentration (CFC). The CFC increased with decreasing droplet radius for both biopolymers because the magnitude of the depletion attraction increases with droplet size. The CFC was lower for gum arabic than modified starch because it has a higher effective volume in solution. Depletion flocculation led to an increase in creaming instability and apparent viscosity of the emulsions. Flocculation could be nondestructively monitored by measuring the decrease in ultrasonic attenuation of the emulsions. These results show that depletion flocculation by gum arabic and modified starch can have an adverse effect on the stability of beverage emulsions.  相似文献   

3.
ABSTRACT: The oxidative stability of polyunsaturated lipids can be improved by incorporating them in oil droplets surrounded by positively charged whey protein isolate (WPI) membranes. This study dealt with the factors that influence the physical properties of WPI-stabilized oil-in-water emulsions at pH 3. Emulsions containing 5 to 50 wt% corn oil and 0.5 to 5.0 wt% WPI (protein-to-oil ratio of 1:10) were prepared at pH 3. The apparent viscosity of the emulsions increased appreciably at oil concentrations ≥ 35 wt%; however, the particle size was relatively independent of oil concentration. The influence of NaCl (0 to 250 m M ) on the physical properties of 28 wt% emulsions was examined. Significant increases in mean particle size, apparent viscosity, and creaming instability occurred at ≥150 m M NaCl, which were attributed to flocculation induced by screening of the electrostatic repulsion between droplets. The influence of heat treatment (30°C to 90°C for 30 min) on 28 wt% emulsions was examined in the absence and presence of salt, respectively. At 0 m M NaCl, heating had little effect on the physical properties of the emulsions, presumably because the electrostatic repulsion between the droplets prevented droplet aggregation. At 150 m M NaCl, the mean particle diameter, apparent viscosity, and creaming instability of the emulsions increased considerably when they were heated above a critical temperature, which was 70°C when salt was added before heating and 90°C when salt was added after heating. These results have important implications for the design of WPI-stabilized emulsions that could be used to incorporate functional lipids that are sensitive to oxidation, for example, ω-3 fatty acids.  相似文献   

4.
Corn oil-in-water emulsions (20 wt%, d32~ 0.6 μm) stabilized by 2 wt% whey protein isolate were prepared with a range of pH (3–7) and salt concentrations (0–100 mM NaCl), and particle size, rheology and creaming were measured at 30°C. Appreciable droplet flocculation occurred near the isoelectric point of whey protein (pH 4–6), especially at higher NaCl concentrations. Droplet flocculation increased emulsion viscosity and decreased stability to creaming. Results are related to the influence of environmental conditions on electrostatic and other interactions between droplets.  相似文献   

5.
The shortening of shelf-life of food emulsions is frequently due to poor creaming and lipid oxidation stability. The lipid oxidation of O/W emulsions can be inhibited by rice dreg protein hydrolysate (RDPH); however, emulsions were stabilized by Tween-20. Polysaccharides can control the rheology and network structure of the aqueous continuous phase by increasing viscosity and yield stress, hence retarding phase separation and gravity-induced creaming, especially for xanthan gum. The objective of this research was to evaluate whether emulsions formed with 2 wt% RDPH and stabilized by xanthan gum (0–0.5 wt%) could produce 20 % (v/v) soybean oil-in-water emulsions that had good physical and oxidative stability. The degree of flocculation of droplets as a function of xanthan gum concentration was assessed by the microstructure, rheology, and the creaming index of emulsions. Addition of xanthan gum prior to homogenization had no significant effect on the mean droplet diameter in all emulsions studied. Increase in xanthan gum concentration led to the increase in creaming stability of emulsions, due to an increase in viscosity of the continuous phase and/or the formation of a droplet network with a yield stress, as well as the enhanced steric and electrostatic repulsion between the droplets. Lipid oxidation of the emulsions was significantly inhibited at xanthan gum concentrations of 0.12 wt% or above with RDPH, which could due to the fact that xanthan gum increases the viscosity of the aqueous phase and hindered the diffusion of oxidants to the oil droplet surface area, synergistic effect between RDPH and xanthan gum to suppress oil peroxidation, and metal ion chelation capability of xanthan gum. Thus, stable protein hydrolyzates-type emulsions could be obtained with increasing concentration of xanthan gum.  相似文献   

6.
Studies have been made of the changes in droplet sizes, surface coverage and creaming stability of emulsions formed with 30% (w/w) soya oil, and aqueous solution containing 1 or 3% (w/w) sodium caseinate and varying concentrations of xanthan gum. Addition of xanthan prior to homogenization had no significant effect on average emulsion droplet size and surface protein concentration in all emulsions studied. However, addition of low levels of xanthan (≤0.2 wt%) caused flocculation of droplets that resulted in a large decrease in creaming stability and visual phase separation. At higher xanthan concentrations, the creaming stability improved, apparently due to the formation of network of flocculated droplets. It was found that emulsions formed with 3% sodium caseinate in the absence of xanthan showed extensive flocculation that resulted in very low creaming stability. The presence of xanthan in these emulsions increased the creaming stability, although the emulsion droplets were still flocculated. It appears that creaming stability of emulsions made with mixtures of sodium caseinate and xanthan was more closely related to the structure and rheology of the emulsion itself rather than to the rheology of the aqueous phase.  相似文献   

7.
Corn oil-in-water emulsions (19.6 wt%; d32~ 0.6 μm) stabilized by 2 wt% whey protein isolate (WPI) were prepared with a range of pH (3–7) and salt concentrations (0–100 mM NaCl). These emulsions were heated between 30 and 90°C and their particle size distribution, rheological properties and susceptibility to creaming measured. Emulsions had a paste-like texture around the isoelectric point of WPI (~φ 5) at all temperatures, but tended to remain fluid-like at pH >6 or <4. Heating caused flocculation in pH 7 emulsions between 70 and 80°C (especially at high salt concentrations), but had little effect on pH 3 emulsions. Flocculation increased emulsion viscosity and creaming. Results were interpreted in terms of colloidal interactions between droplets.  相似文献   

8.
ABSTRACT:  Coconut milk (16% to 17% fat, 1.8% to 2% protein) was extracted from coconut ( Cocos nucifera L.) endosperm and diluted in buffer to produce natural oil-in-water emulsions (10 wt% oil). The effect of pH (3 to 7) and NaCl (0 to 200 mM) on the properties and stability, namely, mean particle size, ζ-potential, viscosity, microstructure, and creaming stability, of the natural coconut milk emulsions was investigated. At pH values close to the isoelectric point (IEP) of the coconut proteins (pH 3.5 to 4) and in the absence of NaCl, coconut milk flocculated, but did not coalesce. Flocculation corresponded to low surface charges and was accompanied by an increase in emulsion viscosity. Adding up to 200 mM NaCl to those flocculated emulsions did not change the apparent degree of flocculation. Coconut milk emulsion at pH 6 was negatively charged and not flocculated. Upon addition of salt, the ζ-potential decreased from –16 to –6 mV (at 200 mM NaCl) but this was not sufficient to induce flocculation in coconut milk emulsions. At low pH (< IEP), the positively charged droplets of coconut milk emulsions only flocculated when the NaCl concentration exceeded 50 mM, as the ζ-potential approached zero.  相似文献   

9.
Fish oil emulsions varying in sodium caseinate concentration (25% w/w oil and 0.1–1.0% w/w protein, giving oil-to-protein ratios of 250–25) were investigated in terms of their creaming stability, rheological properties, the mobility of oil droplets and the oil/protein interaction at the interface. The presence of excessive protein in an emulsion (i.e., at 1% w/w) caused the aggregation of oil droplets through depletion flocculation, resulting in low creaming stability and high low-shear viscosity. At a lower protein concentration (0.1% w/w), when protein was limited, the emulsion droplets were stabilised by bridging flocculation and showed good stability to creaming. Shear-thinning behaviour was observed for both flocculated emulsions. A reduction in the low-shear viscosity and a Newtonian flow was obtained for the emulsion containing an intermediate concentration of protein (0.25% w/w). At this concentration, there was relatively little excess unadsorbed protein in the continuous phase; thus the emulsion was most stable to creaming. NMR was used to characterise these emulsion systems without dilution. Shorter T2 values (by low-field 1H NMR), for the emulsions containing both high (1% w/w) and low (0.1% w/w) amounts of protein, indicated increased restricted mobility of oils, caused by depletion or bridging flocculation. The line broadening in oil signals in the high-field NMR spectra (1H, 13C) indicated increased interaction between oil molecules and proteins at the interface with increasing protein concentration in emulsions. In addition, 31P NMR spectra, which reflect the mobility of the casein component only, showed increased line broadening, with reduction in protein content due to the relatively higher proportion of the protein being adsorbed to the interface of the oil droplets, compared to that in the continuous phase (i.e., as the oil-to-protein ratio was increased). The T2 values of resonances of the individual groups on oil molecules, obtained using high-field 1H NMR, reflected their different environments within the oil droplet.  相似文献   

10.
Creaming stability of emulsions formed with calcium caseinate, determined after storage of emulsions at 20 °C for 24 h, increased gradually with an increase in protein concentration from 0.5% to 2.0%; further increases in caseinate concentration had much less effect. In contrast, the creaming stability of sodium caseinate emulsions showed a decreased with an increase in protein concentration from 0.5% to 3.0%. Confocal laser micrographs of emulsions formed with >2% sodium caseinate showed extensive flocculation of oil droplets with the appearance of a network structure. However, emulsions formed with calcium caseinate or emulsions formed with low concentrations of sodium caseinate (0.5% and 1.0%) were homogenous with no sign of flocculation.  相似文献   

11.
瓜尔豆胶对大豆分离蛋白乳浊液稳定性的影响   总被引:6,自引:0,他引:6  
研究了不同pH值条件下瓜尔豆胶对大豆分离蛋白乳浊液乳析稳定性和絮凝稳定性的影响。研究结果表明 ,在瓜尔豆胶浓度低于 0 0 4%时 ,随着瓜尔豆胶浓度的增加 ,乳浊液的稳定性逐渐增加。当多糖浓度高于 0 0 4%时 ,液滴发生排斥絮凝 ,体系的稳定性急剧下降 ,更高浓度的瓜尔豆胶因与乳浊液液滴间的热力学不相容性而导致体系发生各向同性和各向异性相分离。  相似文献   

12.
An influence of low molecular weight (LMW) chitosan on physicochemical properties and stability of low-acid (pH 6) tuna oil-in-water emulsion stabilized by non-ionic surfactant (Tween 80) was studied. The mean droplet diameter, droplet charge (ζ-potential), creaming stability and microstructure of emulsions (5 wt% oil) were evaluated. The added chitosan was adsorbed on the surface of oil droplets stabilized by Tween 80 through electrostatic interactions. Such addition of chitosan at different concentrations (0–10 wt%) to emulsions showed slight effect on the mean droplet diameter. However, the degree of flocculation was a function of chitosan concentration assessed by emulsions' microstructure and creaming index. The impact of chitosan on the strength of the colloidal interaction between the emulsion droplets increased with increasing chitosan concentration. The mean diameter of droplet in emulsions increased with increasing NaCl because of the electrostatic screening effect. The addition of LMW chitosan could be performed to create tuna oil emulsions with low-acid to neutral character, as well as various physicochemical and stability properties suitable for health food products.  相似文献   

13.
ABSTRACT: The influence of added unmodified amylopectin starch and modified amylopectin starch on the stability of oil-in-water emulsions (4 wt% corn oil), formed with a highly hydrolyzed commercial whey protein (WPH) product, during retort treatment (121°C for 16 min), was examined. The creaming, coalescence, and flocculation of the emulsions were studied by determining changes in the droplet size and the micro structure of the emulsions after retorting. At a low starch concentration (≤ 1.5%), the extent of coalescence was higher in the emulsions containing modified amylopectin starch than in those containing unmodified amylopectin starch. All emulsions containing moderate levels of unmodified or modified amylopectin starch showed flocculation of oil droplets by a depletion mechanism. The degree of flocculation, which was dependent on the molecular weight and the radius of gyration of the amylopectin molecules, was considered to correlate with the extent of coalescence of the oil droplets in these emulsions. At high levels of added starch (>1.5%), the degree of coalescence decreased gradually, apparently because of the high viscosity of the aqueous phase.  相似文献   

14.
The effects of pectin and guar gum on rheology, microstructure and creaming stability of 1% (w/v) egg yolk granule stabilized emulsions were investigated. While the addition of low amount of pectin (0.1% (w/v)) had no effect on the emulsion viscosity, the addition of 0.5% (w/v) pectin greatly increased the viscosity. Granule-stabilized emulsion without hydrocolloids reflects the pseudoplastic behavior (shear-thinning behavior with flow behavior index, n < 1.0). Hydrocolloids, especially at high concentrations, affected the viscoelastic behavior of the emulsions and both storage (G′) and loss modulus (G′′) were regarded as frequency dependent. Emulsions behaved like a liquid with G′′ > G′ at lower frequencies, and like an elastic solid with G′ > G′′ at higher frequencies. Emulsion microstructure indicated that the presence of hydrocolloids induced flocculation. Creaming stability of emulsions was enhanced by the presence of hydrocolloids and increasing hydrocolloid concentration decreased the creaming by restricting the movement of oil droplets.  相似文献   

15.
Relatively concentrated (40 wt%) O/W emulsions formulated with high-oleic sunflower oil as disperse phase, potato protein isolate as emulsifier and chitosan as stabiliser were prepared by rotor–stator/high-pressure valve/rotor–stator homogenization. The influence of chitosan concentration on the physical stability of emulsions was studied in (0.25–1) wt% range by visual inspection, rheological and microstructural techniques. Steady shear flow curves were sensitive to the occurrence of creaming upon the rise of zero-shear viscosity values. The effect of increasing concentration of chitosan on the zero-shear viscosity turned out to be dependent on emulsion ageing and always resulted in a stepwise increase of the critical shear rate for the onset of shear thinning flow. The critical oscillatory shear stress for the onset of non-linear viscoelastic behaviour was more sensitive than the critical shear rate to detect creaming in emulsions. Mechanical spectra are definitely demonstrated to be the most powerful tool to detect not only creaming but also oil droplet flocculation on account of changes in the plateau relaxation zone. CSLM micrographs supported the interpretation of dynamic viscoelastic results, especially when flocculation as well as coalescence took place. Cryo-SEM micrographs evidenced the formation of increasingly denser protein–polysaccharide networks with chitosan concentration and the fact that the latter governs the microstructure of the emulsion when reaches 1 wt% concentration promoting enhanced physical stability.  相似文献   

16.
黄原胶对酪蛋白酸钠乳状液稳定性的影响   总被引:2,自引:0,他引:2  
研究了一定pH条件下,黄原胶浓度及剪切稀化效应对酪蛋白酸钠乳状液稳定性的影响。结果表明,在酸性条件下,黄原胶无法抑制酪蛋白的变性沉淀,乳液在制备之初,即产生严重絮凝。在中性和弱碱性条件下,黄原胶在一定浓度范围内,诱发了乳状液的排斥絮凝;体系的pH显著影响了乳状液的稳定性,pH6条件下,较低的黄原胶浓度(0.2wt%)便可赋予乳状液良好的稳定性。均质过程大大降低了黄原胶的粘度,导致乳状液的稳定性下降,与添加未经均质处理的黄原胶相比,添加量增大近一倍,才能获得稳定的乳状液。  相似文献   

17.
In this study the effect of Lepidium perfoliatum seed gum on the properties of whey protein concentrate (WPC) stabilized corn oil-in-water emulsions at pH 7 was investigated. Various concentrations (0–0.6% w/v) of L. perfoliatum seed gum were used together with 2% (w/v) WPC to emulsify corn oil in water at a ratio of 1:5. Quality attributed such as particle size distribution, creaming profile and coalescence rate during storage at 4 and 25 °C; surface and interfacial tension; zeta potential and viscosity of the emulsions were determined. The results indicated that the addition of L. perfoliatum seed gum had no significant effect on zeta potential but the surface and interfacial tension increased with the rise of gum concentration. It was also found that the addition of L. perfoliatum seed gum to WPC emulsions at a critical concentration of 0.2% (w/v) caused flocculation of oil droplets, which resulted in marked increase in particle size and the creaming rate. However at higher gum concentrations beyond this value, the particle size remained constant, apparently because of the high viscosity of the aqueous phase. At all concentrations tested, emulsions stored at 4 °C were more stable except for those containing 0.2% L. perfoliatum seed gum.  相似文献   

18.
ABSTRACT: Calcium chloride (0 to 10 mM) and potassium chloride (0 to 600 mM) were added into model nutritional beverage emulsions containing 7% (w/w) soybean oil droplets and 0.35% (w/w) whey protein isolate (pH 6.7). The particle size, surface charge, viscosity, and creaming stability of the emulsions then were measured. The surface charge decreased with increasing mineral ion concentration. The particle size, viscosity, and creaming instability of the emulsions increased appreciably above critical CaCl2 (3 mM) and KCl (200 mM) concentrations because of droplet flocculation. The origin of this effect was attributed to reduction of the electrostatic repulsion between droplets due to electrostatic screening and ion binding. CaCl2 promoted emulsion instability more efficiently than KCl because Ca2+ ions are more effective at reducing electrostatic repulsion than K+ ions.  相似文献   

19.
This study introduces Alyssum homolocarpum seed gum, as a natural stabilizer for O/W emulsions. The droplets characteristics, flow properties and physical stability of ultrasonically prepared corn oil-in-water emulsions were investigated at various gum concentrations. The results indicated that for the freshly prepared emulsions, the mean diameter of droplets decreased significantly with an increase in gum concentration from 0.25% to 0.75%. Storage of emulsions for a period of 4 weeks resulted in an increase in the size of droplets, being substantially greater for the samples containing 0.25 and 0.5% gum and negligible for those prepared with 0.75 and 1.0% gum. Similar trend was observed for the specific surface area of droplets but in the opposite direction. Optical microscopy demonstrated that increasing the proportion of gum up to 0.75% reduced the extent of flocculation and coalescence and enhanced monodispersity. Newtonian and non-Newtonian shear-thinning flow behaviors were observed for emulsions prepared with 0.25% gum concentration and those containing higher concentrations respectively. Accordingly, faster creaming was found to be associated with the emulsions prepared with low gum concentration.  相似文献   

20.
Heating a 19 wt% corn oil-in-water emulsion stabilized by 1 wt% whey protein isolate from 30 to 70°C and then cooling to 25°C for at least 15 hr, brought about minimal changes in droplet aggregation, apparent viscosity and susceptibility to creaming. At 75°C, droplet aggregation occurred but this decreased on heating to 90°C. The apparent viscosity and susceptibility of droplets to creaming increased as the degree of droplet aggregation increased. Inclusion of the sulfhydryl blocking agent N-ethylmaleimide to inhibit thiol/disulfide interchange reactions did not affect droplet aggregation but resulted in higher apparent viscosity values and susceptibility to creaming at 85 and 90°C and not at lower temperatures. The results suggest that droplet aggregation results from noncovalent interactions between unfolded protein molecules adsorbed on different droplets and that the interactions are strengthened by disulfide bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号