首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 599 毫秒
1.
以动静压气体径向滑动轴承为研究对象,考虑湍流润滑,基于有限差分方法求解引入湍流因子改良的可压缩雷诺润滑方程,计算湍流润滑动静压气体径向滑动轴承的压力分布,获得轴承承载力、静态刚度、交叉刚度、主刚度、交叉阻尼和主阻尼等表征动静压轴承静动态特性的基本参数,并分析偏心率、槽深、槽数、长径比等结构参数及轴颈转速和供气压力等工况对轴承静动态性能的影响规律。结果表明:连续性狭缝湍流润滑动静压气体径向滑动轴承的静态特性优于非连续性狭缝;轴承承载力随着偏心率、长期径比的增大而增大,随着槽区长度、槽深的增大而减小,槽数对承载力影响不大;轴承静态刚度随着偏心率的增大先增大后减小,随着长径比、槽深、槽数的增大而增大,随着槽区长度的增大而减小;较大的转速和供气压力有助于提升轴承的承载力和静态刚度;随着偏心率的增大,交叉刚度逐渐增大,主刚度先增大而减小,而交叉阻尼和主阻尼均增大。  相似文献   

2.
为研究静压气体轴承的动静压耦合效应机制及其对流场压力分布、承载力等特性的影响,以高速静压气体轴承为研究对象,采用CFD数值仿真方法,在不同偏心率及转速条件下对流场特性、动静压耦合效应机制、承载力以及偏心角进行分析研究。研究表明:转速和偏心率变化导致的气体黏性力、压差流和气体可压缩性变化,影响流场动静压耦合效应的强度,且造成流场的周向压力分布不对称,进而导致承载力及偏心角的变化;在相同偏心率下,承载力随转速升高而单调递增,偏心角随转速升高呈现非线性变化规律;在相同转速下,当转子保持在低速范围内时,偏心角随偏心率增大而增大,高速时则相反。  相似文献   

3.
透平膨胀机应用的小孔节流式静压气体轴承的本质是动静压混合气体轴承,这里将动静压混合气体轴承作为研究对象,从动压轴承和静压轴承角度分别研究其工作原理和静态特性。混合气体轴承中气膜压力分布是求解轴承静态特性的关键,采用有限差分法(FDM)对含有气膜压力的Reynolds方程通过MTLAB编写的程序进行求解,分析混合轴承的工作原理并计算其静态特性。对比分析偏心率、转速、长径比和供气压力等因素对动压轴承和静压轴承静态特性的影响。结果表明:增大偏心率、提高转速、增大供气压力,采用轴承大长径比均可以提高动静压混合气体轴承的承载力;增大偏心率和提高转速,可增大气膜刚度,降低转子姿态角,提高转子稳定性。  相似文献   

4.
针对高速动静压气体轴承气膜的复杂非线性动力学行为,以球面螺旋槽动静压气体轴承为研究对象,建立润滑分析数学模型;采用有限差分法与导数积分法进行求解,得到动态扰动压力分布及动态特性系数,并研究切向供气条件下螺旋槽参数、径向偏心率、供气压力、转速对气膜刚度阻尼系数的影响规律;建立线性稳定性计算模型,预测气膜涡动失稳转速,分析运行参数对失稳转速的影响。结果表明:气膜阻尼是一种抑制涡动的因素,气膜的稳定性取决于气膜刚度与阻尼的协同作用;气膜刚度阻尼随着槽宽比、槽深比、螺旋角的增大,整体上呈先增大后减小的趋势;刚度随转速的升高而增大,阻尼则随转速的升高而减小;径向偏心率和供气压力越大,气膜刚度和阻尼越大;在一定范围内,提高供气压力、增大径向偏心率能够提高系统失稳转速;合理地选取轴承结构参数和运行参数,能够优化轴承动态特性,保证气体轴承较高的运行稳定性。  相似文献   

5.
谷礼新  史龙飞  杨彦涛  黄志伟 《轴承》2022,(10):133-136
通过仿真与试验对纯动压、纯静压、动静压气体径向轴承的静态性能进行了对比分析,得到了轴颈转速、偏心率、气膜的动压效应和静压效应对轴承静态承载力和静态刚度的影响规律。随着转子转速或轴承偏心率的增大,动静压轴承的径向承载力逐渐增大;当转子转速较小时,气膜的静压效应起主导作用,静态刚度随动静压轴承偏心率增大而减小;当转子转速较大时,气膜的动压效应起主导作用,静态刚度随动静压轴承偏心率的增大而增大。  相似文献   

6.
计入气穴影响的径推联合动静压浮环轴承稳定性研究   总被引:1,自引:1,他引:1  
研究了计入气穴影响的径推联合动静压浮环轴承的动态性能和稳定性.给出了控制径推联合浮环动静压轴承内、外膜的气油两相流变密度、变黏度无量纲动态Reynolds方程及压力边界条件和深腔流量平衡方程;用有限元法对不同转速、不同偏心率下含气率为0和0.1的内外油膜进行了有限元计算,得到各部分的刚度系数和阻尼系数;计算了该径推浮环轴承的稳定性参数.结果表明:气穴使得径向、推力内外层油膜的刚度系数和阻尼系数均有所下降,随着偏心率的增大及转速的提高,气穴的影响程度减小;气穴使得轴承的无量纲临界转子质量降低,因此在供油压力急剧变化时必须考虑气穴的影响.  相似文献   

7.
建立计入气穴影响的径向滑动轴承的数学模型,以转速、偏心率和长径比为变量,利用FLUENT软件对径向滑动轴承进行仿真,分析油膜的承载力、偏位角、黏性阻力和温度的变化规律。计算结果表明:随转速、偏心率和长径比的增加,轴承最大压力、承载力、最高温度、气相体积分数和黏性阻力增大,而偏位角减少;气穴起始位置随偏心率的增大而前移,这为在实验中观察气穴位置提供参考;偏心率对油膜最大压力的影响大于转速,偏心率越大,油膜最大压力越大;气穴对轴承油膜承载特性有很大影响,结合实验中的油膜破裂现象,认为考虑气穴更为符合实际情况。  相似文献   

8.
以狭缝节流动静压气体径向滑动轴承为研究对象,采用有限差分方法求解其可压缩气体润滑Reynolds方程,获得压力分布,进而获得轴承承载力、刚度、阻尼等表征滑动轴承静动态特性的参数,并分析偏心率、长径比、槽宽比等轴承的结构参数及供气压力和转速等工况对轴承动静态性能的影响规律。结果表明:在轴承其他参数确定的情况下,连续性狭缝轴承较非续性狭缝轴承具有更大的承载力和刚度;增大偏心率、长径比、供气压力和减小槽宽比均能增加轴承的承载力和刚度;大偏心率、高转速下轴承动压效应突出,可有效提高轴承的承载能力和稳定性能。  相似文献   

9.
以半球螺旋槽动静压气体轴承为研究对象,建立球面动静压混合气体轴承的非线性动态润滑计算分析数学模型,采用偏导数法推导出扰动压力控制方程;在广义坐标系下,采用有限差分法对扰动压力控制方程离散化,推导出扰动压力的差分表达式;推导出半球螺旋槽动静压气体轴承刚度和阻尼系数与扰动压力之间的关系表达式;采用VC++6.0编制程序,数值计算出三维微气膜的瞬态扰动压力分布、非线性气膜力及动态刚度系数和动态阻尼系数。研究转速、偏心率及供气压力对气膜动态特性系数的影响规律,结果表明:随着转速、偏心率及供气压力的增大,气膜刚度和阻尼系数均有不同程度的变化。  相似文献   

10.
基于CFD建立球面螺旋槽动静压气体轴承气膜的有限元模型,数值计算气膜网格点上的压力分布,模拟气膜瞬态流场中复杂的气体流动,得到气膜的压力分布、承载力以及动态特性系数。结果表明:增加供气压力可以有效地增强静压效应,减小气膜厚度和增加转速有助于增强动压效应,动静压效应耦合可以提高轴承承载性能,偏心率为0.4~0.5,平均气膜厚度为8~12μm,供气压力为0.5~0.6 MPa时,产生的动静压耦合效应明显,从而可增加气膜的承载性能和轴承高速运行的稳定性;轴承刚度系数随着气膜厚度的增大呈先增加后减小的趋势,随着偏心率的增加而增加;轴承阻尼系数随着气膜厚度和偏心率的增加变化较为复杂,但整体上呈增大的趋势,因此,合理地选取气膜厚度和偏心率能够提高轴承承载性能,改善其动态特性,提高球面动静压气体轴承运行稳定性。  相似文献   

11.
动静压轴承油膜温度场特性分析与实验研究   总被引:2,自引:0,他引:2  
以具有深浅腔的动静压轴承为研究对象,基于GAMBIT对油膜进行网格划分并建立三维有限元模型,编写纳入Reynolds边界条件和实现偏位角迭代的UDF程序。通过FLUENT仿真得到该动静压轴承不同工况下油膜的温度场分布,计算和分析表明油膜温升随主轴转速和偏心率的增加而迅速提高,且转速增大,温度峰值沿轴颈旋转方向逐渐后移。搭建实验台并测量试验轴承不同位置的温度,并与FLUENT计算结果进行对比,结果趋势一致。  相似文献   

12.
带过渡深腔的动压轴承的优化设计与试验   总被引:1,自引:0,他引:1  
为了提高动压轴承的承载能力和稳定性,提出一种带过渡深腔的动压轴承的新结构。由雷诺方程出发,纳入带腔动压轴承的边界条件,采用细分网格的差分算法,对轴承进行性能分析与优化设计得到带过渡腔的动压轴承的系列的特性数据和结构参数。新轴承具有承载能力大和稳定性高的特点。与普通动压轴承比较,在常用工况下,新轴承的承载能力可增大18%~98%,偏位角可由43°降低到14°,轴承稳定运转速度可提高10%~75%。在HZS-1轴承试验台上测量了轴承的油膜压力分布及偏心比。试验结果与理论分析结果具有良好的一致性。  相似文献   

13.
考虑气穴的影响,建立了油膜轴承所支撑转子系统的动力学模型,并利用新的动网格更新方法,编制了求解油膜轴承压力分布、转子静平衡位置以及轴心轨迹的程序,验证了其正确性。利用该程序考察了气穴压力和转速对油膜轴承压力分布和所支撑转子的轴心静平衡位置的影响。计算结果表明,在相同的速度和载荷下,随着气化压力升高,轴承偏心率和最大油膜压力增大,偏位角减小,并且最大油膜压力的周向位置受气化压力的影响较小;而在相同的载荷下,转速对转子静平衡位置影响较大,并随着转速增加,轴承偏心率减小,偏位角增加。  相似文献   

14.
为提升涡旋齿润滑性能,以某型号涡旋压缩机为研究对象,通过分析动、静涡旋体啮合点的运动规律,建立涡旋齿侧壁间动压润滑油膜的理论模型;利用有限差分法求解油膜压力分布,分析油膜承载力随主轴转角、主轴转速、润滑油黏度、偏心率及涡旋体高度的变化关系。结果表明:油膜承载力随主轴转角先减小,达到排气角时会陡增,随后再次减小,因此,在转角接近排气角处油膜承载力最小,最容易产生润滑失效;提高主轴转速,使用黏度大的润滑油可提高油膜承载力,转速越高,润滑油黏度对油膜承载力的影响越大;油膜承载力随偏心率增大而增大,但偏心率过大会导致油膜过薄,加剧磨损,偏心率过小会导致齿侧间隙过大,增大气体泄漏量;增大涡旋体高度可增加油膜承载力,但其增加的幅度不断减小。  相似文献   

15.
李树森  杨非  陈群  陈宝 《润滑与密封》2023,48(10):23-29
基于仿生学原理和几何重构法,在动静压气体轴承上设计具有鸟翼轮廓仿生槽,以提高其承载能力及刚度。运用变分法求解雷诺方程并使用FLUENT软件,对鸟翼轮廓仿生槽动静压气体轴承进行静态特性仿真分析,研究轴颈转速、供气压力、偏心率、槽深以及槽偏角对轴承静态特性的影响。结果表明:在偏心率相同时,随着轴颈转速的增加,轴承承载能力和刚度随之增大,随着供气压力的增加,轴承承载能力逐渐增加、刚度逐渐减小;当气膜厚度一定时,随着槽深的增加,轴承承载能力和刚度呈现先增加后减小的趋势,随着槽偏角的增加,轴承承载能力和刚度呈现先增加后减小的趋势。  相似文献   

16.
陈阳  张功学  吴垚 《润滑与密封》2023,48(10):157-164
多叶动压气体滑动轴承因其结构简单、摩擦阻力低、旋转精度高和无环境污染等优点,在高速离心分离机、空气压缩机和透平膨胀机等旋转机械中应用广泛。为探究多叶动压气体滑动轴承的静态性能,通过数学变换将三叶动压轴承的气体润滑Reynolds方程转化为标准偏微分方程形式,利用有限差分法和超松弛迭代法进行数值求解,研究气膜厚度和气膜压力分布、承载力、摩擦因数和质量流量等静态性能,随偏心率、预负荷系数、轴承数、长径比及瓦块分布位置的变化规律。结果表明:三叶轴承的承载力和轴颈表面摩擦因数随偏心率和长径比的增加而增加,而偏位角和质量流量随偏心率和预负荷系数的增加则呈现出相反的变化趋势;随着轴承数和预负荷系数的增大,承载力和摩擦因数显著提高,偏位角和质量流量则逐渐减小;瓦块分布位置对三叶动压气体滑动轴承的静态性能影响显著,其中瓦上承载方式的承载力、偏位角和质量流量明显高于瓦间承载方式。  相似文献   

17.
滑动轴承广泛应用于旋转机械中,其静动态参数对旋转机械的运转有很大影响。确定滑动轴承的静动态参数依赖于轴承的油膜压力分布,Reynolds方程是油膜压力计算的基础。对于具体轴承参数计算,传统方法是利用已知的给定偏心率和宽径比下的轴承静动态参数进行曲线拟合,通过反推实际轴承的偏心率和偏位角,然后进行压力分布计算。这种逆运算不太方便。基于有限差分法,采用MATLAB软件编程计算,利用实际轴承已知外力和宽径比直接求解完整二维流动Reynolds方程得到油膜压力分布曲线,进一步利用改进方法设计计算实际轴承参数,取得较好的计算精度,使圆瓦轴承参数计算更为简便。  相似文献   

18.
马元  吴华根  邢子文 《流体机械》2006,34(4):1-4,18
通过试验研究分析了在卸荷工况下的螺杆压缩机轴承供油量、排气量、轴承温度、比功率、油气比等性能参数的变化情况。研究发现:在同一排气压力下,排气量随着转速上升而下降;在同一转速下,排气量随排气压力上升急剧下降;随着转速和排气的上升,比功率增长率上升;在排气温度与喷油温度保持稳定的情况下,随着排气压力上升,轴承供油量、轴承温度上升;油气体积比随着排气压力上升而上升,最高时达到了20%,严重背离了合理的工况要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号