首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
目的 研究双泥生物膜亚硝化反硝化除磷工艺的最佳后曝气池水力停留时间(HRT).方法 通过改变后曝气池出水口位置的方法调节后曝气池HRT,研究不同后曝气池HRT条件下,双泥生物膜工艺的脱氮除磷性能和COD去除率的变化.结果 在后曝气池HRT为2.4h的条件下,系统COD平均去除率为66.68%,NH4-N平均去除率为88.41%,出水NH4+-N平均质量浓度为6.26 mg/L,大部分NH4-N都在前段反应中去除,同步亚硝化反硝化不受COD质量浓度的限制;TP平均去除率在94.88%左右,厌氧释磷率稳定在45.24%左右,缺氧吸磷率最大,维持在54.59%.HRT为4.8h时,TP平均去除率降至59.48%,可利用的COD质浓度逐渐减少,使运行后期的NH4-N氧化率下降.结论 对于长期运行的双泥生物膜亚硝化反硝化除磷工艺,保持后曝气池HRT为2.4h,系统出水COD值可满足排放标准,脱氮效果稳定,除磷效果最好.  相似文献   

2.
分别驯化、培养厌氧消化菌和反硝化菌,以间距180μm的不锈钢网为电极,构建了双室型无质子交换膜微生物燃料电池(MFCs)污水处理系统,厌氧消化菌在阳极附着成膜,组成生物阳极氧化去除有机污染物;反硝化菌在阴极附着成膜,组成生物阴极反硝化去除含氮污染物,实现污水深度处理。在电池系统稳定运行期间,最高开路电压为126.6mV,COD、NH4+-N和NO3--N的最高去除率分别为88.9%、97.7%和98.2%,而出水中NO2--N的含量始终低于1.25mg/L。阳极室和阴极室不连通时,两室COD、NH4+-N和NO3--N的最高去除率之和分别为67.0%、76.9%和84.0%,明显低于MFCs系统对污染物的去除能力,这表明该MFCs系统通过耦合阳极氧化和阴极还原作用,具有良好的有机污染物和含氮污染物协同去除能力。  相似文献   

3.
在实验室条件下研究利用传统的生物处理工艺UASB(厌氧)、SBR(好氧)与陈腐垃圾生物反应床(ARF)、蚯蚓生物滤床(EF)组合处理上海老港填埋场调节池渗滤液.实验结果表明组合工艺中UASB单元去除容易降解的有机物,COD的去除率控制在35%,为下一步的短程硝化反硝化提供必要的碳源;SBR单元则通过低氧曝气控制DO在0.8~1.2mg/L实现短程硝化反硝化去除50%以上的TN;ARF和EF是作为后处理工艺进一步去除剩余的COD和TN(分别达到26%和73%),其中在ARF的进水中投加甲醇作为外加碳源(C/N为1)实现反硝化去除积累的NO2-N.组合工艺出水BOD和NH+4-N均优于二级排放标准,但出水COD超过1000mg/L,需要增加物化工艺去除难降解的腐殖质类物质.  相似文献   

4.
城市生活垃圾填埋场渗滤液生化处理试验研究   总被引:4,自引:0,他引:4  
采用“两级UASB-A/O生化系统”处理含有高质量浓度COD与NH4 -N的生活垃圾渗滤液.在UASB1中实现同时反硝化与产甲烷反应,出水COD在UASB2中进一步去除.在A/O反应器中去除残余COD与NH4 -N的彻底硝化.在UASB1与UASB2中最大COD去除率分别为12.5 kg/(m3.d)与8.5 kg/(m3.d).两级UASB为后续硝化创造了良好的条件.UASB1在30℃的气体产率为0.28 m3/kg COD,气体的组成相对恒定,CH4,N2,CO2所占的比例分别为63%~73%,25%~35%,2%.UASB2在35℃的气体产率为0.40 m3/kg COD,CH4,CO2所占的比例分别为98%,2%.通过几乎100%的短程硝化NH4 -N几乎完全去除,最大NH4 -N去除负荷为0.68 kg/(m3.d).该技术实现了渗滤液经济高效的生物脱氮.  相似文献   

5.
在实验室条件下研究利用传统的生物处理工艺UASB(厌氧)、SBR(好氧)与陈腐垃圾生物反应床(ARF)、蚯蚓生物滤床(EF)组合处理上海老港填埋场调节池渗滤液.实验结果表明:组合工艺中UASB单元去除容易降解的有机物,COD的去除率控制在35%,为下一步的短程硝化反硝化提供必要的碳源;SBR单元则通过低氧曝气控制DO在0.8~1.2mg/L实现短程硝化反硝化去除50%以上的TN;ARF和EF是作为后处理工艺进一步去除剩余的COD和TN(分别达到26%和73%),其中在ARF的进水中投加甲醇作为外加碳源(C/N为1)实现反硝化去除积累的NO2-N.组合工艺出水BOD和NH+4-N均优于二级排放标准,但出水COD超过1000mg/L,需要增加物化工艺去除难降解的腐殖质类物质.  相似文献   

6.
常温低氨氮污水生物滤池部分亚硝化的实现   总被引:1,自引:0,他引:1  
采用火山岩活性生物陶粒滤料反应器,在常温(8~25℃)、低ρ(NH4+-N)(60~90 mg/L)条件下,通过控制曝气,实现了NO2--N的积累,系统启动后NO2--N的累积率大于80%.结果表明:DO控制是实现亚硝化的主要途径,而游离氨(FA)抑制可作为优选氨氧化细菌(AOB)的辅助途径,水力停留时间(HRT)的调整是控制亚硝化比例的主要手段;间歇运行条件下,ρ(NH4+-N)、ρ(NO2--N)和ρ(NO3--N)的变化均具有零级反应动力学特征,且NH4+-N的转化速率为4.32 mg/(L.h),NO2--N与NO3--N的积累速率分别为3.05、0.40 mg/(L.h),根据此规律,将实现部分亚硝化的HRT确定为9~14 h.  相似文献   

7.
论文研究了溶解氧(DO)对同步硝化反硝化膜生物反应器(SNdNMBR)处理生活污水过程脱氮除磷的影响.在一定的条件下控制DO浓度于不同的范围,考察MBR内同步硝化反硝化过程及对COD的去除效果.试验结果表明:当水力停留时间(HRT)在6 h左右、C/N(浓度比)约为8和pH在微碱性范围内时,反应器进行低氧曝气且将DO控制在1.0 mg/L左右,系统表现出良好的SNdNMBR过程脱氮除磷效果,膜生物反应器系统对COD、NH3-N、TN和TP的去除率分别达到89.43%、80.5%、75.72%和76.37%.  相似文献   

8.
试验采用A/O工艺,在进水COD为500-600 mg/L,NH3-N为80-90 mg/L,pH7.0-8.0,溶解氧为2-3 mg/L,温度为18-25℃的条件下,分别研究了不同海水盐度(10%,30%,50%,70%海水比例)对有机物及NH3-N去除效果的影响,对系统短程硝化的影响,以及对活性污泥结构与沉降性能的影响.结果表明:海水盐度在30%范围内,经驯化稳定后,系统对COD和NH3-N的去除率均可达到90%左右,NH3-N去除率受盐度影响程度相对更小;控制海水盐度在30%以上,系统可实现短程硝化;海水盐度为50%时,亚硝化率可达到97%,且较为稳定;随海水盐度的增加,污泥絮凝体由开放、疏松变得封闭、紧密,SVI不断下降.  相似文献   

9.
电子受体对厌氧/好氧反应器聚磷菌吸磷的影响   总被引:2,自引:0,他引:2  
为对聚磷菌有进一步的了解,以厌氧/好氧生化反应器中的聚磷菌为试验对象,研究了3种不同电子受体(O2、NO3-N、NO2-N)对聚磷菌吸磷效果的影响.结果表明:传统的厌氧/好氧生化反应器中存在有反硝化聚磷菌,且随着NO3-N质量浓度的不同,反硝化聚磷速率和总量也不同,而低水平的COD/TP将有利于反硝化聚磷菌的生长;此外,NO2-N也可参与聚磷菌缺氧吸磷反硝化的过程,但高质量浓度的NO2-N(本试验结果为≥95mg/L)将会对聚磷菌产生抑制作用.试验证实,以氧为电子受体的聚磷速率和聚磷总量明显高于NO3-N和NO2-N,但是,后二者的能耗、污泥产生量低于前者.  相似文献   

10.
碳源对生物膜同步硝化反硝化脱氮影响   总被引:4,自引:0,他引:4  
利用序批式移动床生物膜反应器研究了有机碳源对低碳氮比ρC/ρN(指ρCOD/ρTN,以下同)生活污水同步硝化反硝化脱氮的影响,结果表明,在无外加碳源时,同步硝化反硝化条件下TN去除率为59.8%,COD平均去除率为83.12%,NH+4-N去除率为94.9%(最高达到99.8%);分别以淀粉、葡萄糖和甲醇为外加碳源,ρC/ρN=7时,发现投加外碳源有利于有机物、NH+4-N和TN的降解和转化,NH+4-N转化受碳源种类影响不大,投加淀粉时有机物降解不完全导致系统有恶化趋势,投加甲醇碳源时系统脱氮效率最高,TN去除率达84.5%,投加葡萄糖时,TN去除率为80.55%,从安全和经济方面考虑,确定投加葡萄糖较为合适.  相似文献   

11.
不同的进水流量分配对多段进水A/O生物脱氮工艺的脱氮效率有明显影响,为提高多段进水A/O生物膜脱氮工艺的脱氮效率,本研究试验了两种不同流量分配下三段进水A/O生物膜脱氮工艺对污染物的去除效率。研究结果表明:当进入缺氧单元分配的进水中可生物降解COD量与进入该单元的硝态氮量的比值(用α表示)分别为4 mgCOD/mgNO3-N和7 mgCOD/mgNO3-N进行流量分配设计时,三段进水A/O生物膜脱氮工艺对COD、氨氮和总氮的去除效率分别为94.85%、99.62%、75.81%和96.71%、98.84%、78.42%;α等于7mgCOD/mgNO3-N时工艺的总氮去除效率略高于α等于4 mgCOD/mgNO3-N时的总氮去除效率。  相似文献   

12.
化学改性对沸石去除水中碳、氮污染物的影响   总被引:2,自引:0,他引:2  
为提高沸石对水中多种污染物的去除效果,以水溶液中低浓度氨氮、硝态氮和有机物为研究对象,重点研究了乙酸、柠檬酸、柠檬酸钠、十二烷基磺酸钠(SDS)、氯化钠、十六烷基三甲基溴化铵(HDTMA)6种不同无机\有机化学改性剂对沸石去除氨氮、硝态氮、COD的影响.研究表明,对低浓度氨氮去除效果最好的为柠檬酸钠改性沸石,最佳浓度为0.05 mol/L,去除率为98.14%;对低浓度硝态氮去除效果最好的为HDTMA改性沸石,最佳浓度为0.05 mol/L,去除率为24.81%;对低浓度COD去除效果最好的为柠檬酸改性沸石,最佳浓度为0.05 mol/L,去除率为42.57%,且改性沸石阳离子交换容量的大小与其对氨氮的去除率呈正相关.同时得出了不同改性剂对沸石去除氨氮、硝态氮、COD的影响规律,并发现柠檬酸钠改性沸石同步去除水溶液中低浓度氨氮、硝态氮和COD的效果远高于原天然沸石.  相似文献   

13.
DO对膜曝气生物反应器同步除碳脱氮的影响   总被引:1,自引:0,他引:1  
为获得膜曝气生物反应器(membrane aerated bioreactor,MABR)处理污水同步除碳脱氮的最佳DO质量浓度,构建以亲水性聚丙烯中空纤维膜为曝气膜组件的MABR,在80 d连续运行的时间内,考察DO质量浓度对MABR处理模拟生活污水同步除碳脱氮效果的影响.结果表明:在水力停留时间8 h、膜表面COD...  相似文献   

14.
通过逐步提高盐度的方法驯化出耐高盐的活性污泥,采用序批式生物膜法(SBBR)进行模拟高盐废水的处理试验,对盐度为0和2%,COD为300 mg/L的高盐废水进行研究。结果表明,在每周期12 h、曝气量0.6 L/min、平均污泥质量浓度2 000~3 500 mg/L、污泥龄为18 d条件下,出水COD去除率变化不大,分别为97%和93%,而相应的出水NH4+-N去除率从93%降低到72%,表明废水盐度增大,对系统的硝化能力有较大影响。改变进水有机负荷对出水COD去除影响不大,该系统耐有机负荷冲击能力较强。  相似文献   

15.
以硝化菌增长的Haldane模式为基础,通过理论分析证明,完全混合式活性污泥反应器是碳氧化(COD降解)和NH3—N硝化合并处理工艺的最佳反应器,给出了曝气池NH3—N的最佳浓度(7.4mg/L).在此基础上,采用单级活性污泥法处理同时含有COD350—400mg几和NH3—N150mg/L的树脂生产废水,结果表明:当控制水力停留时间(HRT)为8h时,NH3—N的硝化率和COD去除率分别为90%和65%,将HRT延长至10h,NH3—N可完全硝化,而COD的去除率并不降低。  相似文献   

16.
采用混凝-电渗析耦合工艺对汾河排污渠中COD和氨氮的去除具有良好效果,能有效治理汾河污染。混凝预处理中最佳混凝剂是聚合氯化铝,最佳投量为6mg/L,COD和浊度的去除率分别达73%和77%,且吨水处理成本低。出水进入电渗析器处理,COD、NH3-N的去除率分别为63%和96.4%。因此,采用混凝-电渗析耦合法处理汾河排污渠污水,出水中COD和NH3-N的浓度分别为24.3mg/L和1.5mg/L,COD和NH3-N总去除率分别为90%和96.9%,完全满足地表水Ⅳ类标准的水质要求。NH4+的迁移符合一级动力学。此法工艺流程短,技术先进,能耗低,无二次污染。  相似文献   

17.
将ABR反应器与MBR反应器相结合,构建ABR/MBR优化组合工艺(CAMBR),并用于处理城市污水(pH6.5~8.5,温度25±1℃)。结果表明,CAMBR反应器在HRT为7.5 h,回流比为200%以及DO为3 mg/L时,反应器运行稳定,出水达到了《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A标准。出水COD、NH4+-N、TN和TP的平均浓度分别为24、0.4、10.6、0.31 mg/L;对应的去除率分别为93%、99%、79%和92%。膜池强化了系统去除功能,对NH4+-N、TN和TP的去除率分别为13%、10%和18%。  相似文献   

18.
针对晚期垃圾渗滤液实现深度除碳脱氮,采用上流式厌氧污泥床(upflow anaerobic sludge blanket,UASB)-缺氧/好氧反应器(anoxic/aerobic reactor,A/O)-厌氧氨氧化反应器(anaerobic sequencing batch reactor,ASBR)组合工艺,以短程硝化-厌氧氨氧化耦合反应为依托,通过UASB实现有机物的大部分降解,在A/O中实现短程硝化,在ASBR中通过厌氧氨氧化深度脱氮.研究结果表明:当进水ρ(CODcr)、ρ(NH_4~+-N)和ρ(TN)分别为2 220 mg/L、1 400~1 450 mg/L和1 450~1 500 mg/L;最终出水分别为98、7、25 mg/L,实现了分别为95.6%、98.3%和99.5%的高去除率.故该工艺无须投加任何外碳源,最终实现化学需氧量(chemical oxygen demand,COD)、氨氮(NH_4~+-N)和总氮(total nitrogen,TN)的高效、深度去除.  相似文献   

19.
亚硝酸型硝化在生物陶粒反应器中的实现   总被引:2,自引:0,他引:2  
为确定低氨氮污水处理过程中的亚硝酸型硝化的特性,采用生物陶粒反应器对其亚硝化效果和稳定性进行研究.试验结果表明,在水温20~25℃,水力负荷0.6 m3/(m2.h),气水比(3~5)∶1,进水COD负荷106~316 mg/L,氨氮负荷42.78~73.62 mg/L的条件下,反应器对氨氮的平均去除率可达到81.32%,且亚硝酸氮积累率基本稳定地保持在91%~99%.结合反应器中氮元素沿程变化分析及反应器内生物膜中微生物的计数结果表明,通过控制低溶解氧,实现了在常温条件下稳定的亚硝酸盐积累.  相似文献   

20.
采用厌氧/缺氧/好氧膜生物反应器对北京某城市污水处理厂的初沉池出水进行中试试验,约200 d的研究表明,在水力停留时间保持12.5 h后,化学需氧量、生物需氧量及总有机碳的去除率分别稳定在92%、98%、85%左右,其中生化降解部分与膜过滤部分对COD去除的贡献率分别为89%和11%;NH4+-N、总氮(total nitrogen,TN)的去除率分别为98%、79%左右,出水ρ(TN)平均在10 mg/L左右;系统在污泥龄为40 d左右时,总磷(totalphosphorus,TP)平均去除率为85%,出水ρ(TP)在0.93 mg/L左右;反硝化除磷、好氧吸磷、膜截留对总磷的去除所占的比例分别为44.6%、51.8%、3.6%;出水浊度极低且几乎无悬浮物,可直接回用于城市杂用水.间歇抽吸、曝气冲刷、在线水力反冲及定期药洗保证了该系统的可持续运行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号