首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sol-gel method was successfully used for synthesis of ZnO nanoparticles doped with 10 % Mg or Cu. The structure, morphology and optical properties of the prepared nanoparticles were studied as a function of doping content. The synthesized ZnO:(Mg/Cu) samples were characterized using XRD, TEM, FTIR and UV-Vis spectroscopy techniques. The samples show hexagonal wurtzite structure, and the phase segregation takes place for Cu doping. Optical studies revealed that Mg doping increases the energy band gap while Cu incorporation results in decrease of the band gap. The antibacterial activities of the nanoparticles were tested against Escherichia coli (Gram negative bacteria) cultures. It was found that both pure and doped ZnO nanosuspensions show good antibacterial activity which increases with copper doping, and slightly decreases with adding Mg.  相似文献   

2.
The present work reports study on antimicrobial activity of pure and doped ZnO nanocomposites. Polyvinyl pyrrolidone capped Mn- and Fe-doped ZnO nanocomposites were synthesised using simple chemical co-precipitation technique. The synthesised materials were characterised using transmission electron microscope (TEM), X-ray powder diffraction (XRD), energy dispersive X-ray fluorescence (EDXRF), Fourier transform infrared (FTIR) spectroscopy and ultraviolet (UV) visible spectroscopy. The XRD and TEM studies reveal that the synthesised ZnO nanocrystals have a hexagonal wurtzite structure with average crystalline size ~7–14 nm. EDXRF and FTIR study confirmed the doping and the incorporation of impurity in ZnO nanostructure. The antimicrobial activities of nanoparticles (NPs) were studied against fungi, gram-positive and gram-negative bacteria using the standard disc diffusion method. The photocatalytic activities of prepared NPs were evaluated by degradation of methylene blue dye in aqueous solution under UV light irradiation. Experimental results demonstrated that ZnO NPs doped with 10% of Mn and Fe ions showed maximum antimicrobial and photodegradation efficiency in contrast with that of the 1% loading. The enhancement in antimicrobial effect and photocatalytic degradation is attributed to the generation of reactive oxygen species due to the synergistic effects of Mn and Fe loading.  相似文献   

3.
Undoped and Cobalt (Co) doped zinc oxide (ZnO & CZx) nanoparticles were synthesized by Solvothermal method. The samples were studied by X-Ray Diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDS), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), UV–Vis spectroscopy and Scanning and Transmission Electron Microscopy (SEM & TEM). Moreover the gas sensing properties of the nanoparticles for methane gas took place. Purity of the samples and Co concentration was investigated by EDS and ICP spectroscopy respectively. XRD results described the hexagonal wurtzite structure for all the samples in which crystallinity and the crystallites size decreased with increase of Co doping level. Using UV–Vis spectroscopy the band gap energy was evaluated and redshift of band gap energy was observed by increasing of Co concentration. SEM images demonstrated that nanoparticles were agglomerated with increase of Co doping level. TEM images revealed the nanoparticles size in the range 11–44 nm. Methane sensing properties was enhanced after Co doping of the ZnO nanoparticles for Co concentration up to 4%.  相似文献   

4.
We report the synthesis of Co doped ZnO nanoparticles by combustion method using citric acid as a fuel for 0%, 1%, 3%, 5% and 10% of Co doping. The structural, optical and dielectric properties of the samples were studied. Crystallite sizes were obtained from the X-ray diffraction (XRD) patterns whose values are decreasing with increase in Co content up to 5%. The XRD analysis also ensures that ZnO has a hexagonal (wurtzite) crystal structure and Co2+ ions were successfully incorporated into the lattice positions of Zn2+ ions. The TEM image shows the average particle size in the range of 10–20 nm for 3% Co doped ZnO nanoparticles. The energy band gap as obtained from the UV–visible spectrophotometer was found gradually increasing up to 5% of Co doping. The dielectric constants (?′, ?″), dielectric loss (tan δ) and ac conductivity (σac) were studied as the function of frequency and composition, which have been explained by ‘Maxwell Wagner Model’.  相似文献   

5.
利用溶胶凝胶法制备了纳米结构的Cu掺杂ZnO基稀磁半导体,通过X射线衍射分析表明,样品为纯相ZnO纤锌矿结构,磁性测量表明样品在室温下呈室温铁磁性,铁磁性来源为氧化锌晶格中的缺陷与Cu2+离子之间的交换作用。室温光致发光(PL)谱观察到紫外带边和可见光区两个发射峰,且随着Cu掺杂量增加,紫外峰淬灭,可见峰发射增强。  相似文献   

6.
Here we report, copper (Cu) and Aluminum (Al) doped zinc oxide (ZnO) nanoparticles by a novel one step microwave irradiation method for the first time. Powder X-ray diffraction (XRD) reveals that both pure and doped samples assigned to hexagonal wurtzite type structure. The calculated average crystalline size decreases from 24 to 11 nm for pure and doped (Al and Cu) ZnO respectively, which is in good agreement with the particles size observed from Transmission Electron Microscope (TEM) analyses. A considerable red shift in the absorption edge and the reduction in the energy gap from 3.35 to 2.95 eV reveal the substitution of Al3+ and Cu2+ ions into the ZnO lattice analyzed by UV–Vis transmission spectra. The photocatalytic degradation of Methyl Violet (MV), Phenol and Rhodamine B (RHB) was investigated by using pure, Al and Cu doped ZnO catalyst under UV light irradiation. The results showed that the photocatalytic property is significantly improved by Cu doping concentration. This could be attributed to extended visible light absorption, inhibition of the electronehole pair’s recombination and enhanced adsorptivity of dye molecule on the surface of Cu–ZnO nanopowders. The samples were further characterized by photoluminescence spectra and Fourier Infrared Spectra (FTIR) analysis.  相似文献   

7.
ZrO2-decorated ZnO (ZrO2|ZnO) nanoparticles (NPs) have been synthesized by a facile co-precipitation method in the presence of cetyltrimethylammonium bromide (CTAB) surfactant. The ZrO2 amount in the NPs has been varied from 1.0, 2.0, 4.9, to 9.3% by weight. The resulting NPs are heterostructured and consist of a crystalline ZnO core (wurtzite phase) surrounded by an amorphous ZrO2 layer. X-ray diffraction analyses support this observation. The NPs show a narrow size distribution and are slightly elongated. Compared to pure ZnO NPs, the hybrid ZrO2|ZnO ones show enhanced photocatalytic activity toward the degradation of Rhodamine B under UV–Vis light. Such enhancement has been partly attributed to the increased amount of oxygen vacancies when ZrO2 is incorporated into the NPs, as shown by X-ray photoelectron spectroscopy analyses.  相似文献   

8.
Pure and Tb-doped ZnO nanoparticles have been synthesized by chemical co-precipitation method. The transmission electron microscopy study reveals the spherical morphology of synthesized nanoparticles with average particle size 14–18 nm. The effect of Tb-doping on structural, optical and magnetic properties has been studied. X-ray diffraction shows that pure and Tb-ZnO nanoparticles exhibit wurtzite structure having hexagonal phase with primitive unit cell. It further reveals that there is no effect of Tb-doping on the X-ray diffraction pattern up to 2 % doping, however, higher doping concentration result in accumulation of Tb on ZnO surface. Photoluminescence spectra reveal that the doping Tb in ZnO changes crystallographic structure generating non-radiative oxygen vacancies. Three emission peaks located around 423, 485 and 515 nm has been observed. Pure ZnO nanoparticles show diamagnetic character, however, Tb-doped ZnO nanoparticles exhibit room temperature ferromagnetism. The correlation between defects generated upon Tb-doping to the observed ferromagnetism, in the synthesized nanoparticles, has been reported.  相似文献   

9.

Pristine ZnO, Al-doped ZnO, and TiO2 coated ZnO nanoparticles (NPs) were synthesized by the wet chemical precipitation technique. All the synthesized NPs were characterized using X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy. XRD analysis of pristine ZnO and Al-doped ZnO NPs revealed the hexagonal wurtzite structure with P63mc space group with no secondary phases and impurities. FESEM micrographs also depicted hexagonal grains with well-defined grain boundaries. TEM images showed hexagonal polyhedral shape for pure ZnO NPs and spherical shape dominating polyhedral particle for Al-doped ZnO NPs, and pseudospherical particles for TiO2 coated ZnO NPs. Energy-dispersive X-ray spectroscopy of Al-doped ZnO indicates the eminent exchange of dopant in the lattice site of Zn. Dielectric Studies reveal the highest value of the dielectric constant and lowest value of dielectric loss for Al-doped ZnO as compared to pure and TiO2-coated ZnO NPs. Suggesting Al-doped ZnO to be used as a dielectric material that can serve as a basic building block of the energy storage devices such as dielectric capacitor. TiO2-coated ZnO NPs demonstrated higher AC conductivity in comparison to pure ZnO and Al-doped ZnO NPs suggesting their use as a conductive nanofiller materials in a polymer-based nanocomposite to achieve higher energy density.

  相似文献   

10.
We report here the synthesis of Cu and Fe doped ZnO nano-particles. Cu and Fe doped ZnO nanoparticles were successfully synthesized and structurally, optically and morphologically characterized using X-ray diffractometer, optical spectroscope and scanning electron microscope. The crystal size is in the range of 15–20 nm for both the Cu and Fe doped ZnO nanoparticles. Nanoparticles are not below the critical size where quantum confinement effect is observed. ZnO has hexagonal, wurtzite structure. Synthesis was carried out at 60 °C. The light orange and gray color powder of Cu and Fe doped ZnO nanoparticles were obtained.  相似文献   

11.
蒸气氧化法制备掺锑氧化锌纳米颗粒的研究   总被引:2,自引:0,他引:2  
以不同摩尔比的Zn-Sb合金为原料,采用加热蒸发氧化-冷凝的方法在相同的试验条件下获得了纯的和Sb掺杂的ZnO纳米颗粒.纳米颗粒的形貌、结构和化学状态分别通过TEM、HRTEM、XRD和XPS进行了表征.通过TEM观察发现:随原料中Sb量的增加,颗粒形貌由纯ZnO的四针状纳米晶须逐渐变化为棒状、四方形和六方形的颗粒状.六方形纳米颗粒的HRTEM分析表明:颗粒是结晶完好的纤锌矿结构的单晶,(1100)晶面间距比文献报道的纯ZnO的数值大.XRD没有检测到Sb掺杂ZnO纳米颗粒除ZnO外的其它物相,但XPS分析确定了Sb元素存在于纳米颗粒中.讨论了四针状纳米ZnO的形成及Sb的存在对颗粒形态的影响.  相似文献   

12.
One-dimensional Co doped ZnO nanostructures have been successfully synthesized by a wet chemical technique. X-rays diffraction results reveal that with Co doping ZnO retained its wurtzite structure, but lattice constants are slightly decreased. SEM results demonstrate that Co doping changes morphology of ZnO nanostructures from nanowires to nanorods. It has been confirmed through HRTEM results that Co dopant cannot change preferred growth orientation of ZnO, although it remarkably influenced the grain size and morphology. The Co dopant is found to be uniformly distributed over various parts of single nanorod and settles at 2+ chemical oxidation state without forming any secondary phases. In response to Co doping, near band edge peak in UV region is red shifted and VL band peak intensity is remarkably enhanced. It is also found that Co doping induces large amount of defects in ZnO band structure. Furthermore, the doped nanorods exhibit ferromagnetic behavior at room temperature, which is attributed to the presence of abundant amount of defects and oxygen vacancies. The tunned band gap and ferromagnetic behavior at room temperature with high M s and H c values make them potential for spintronics applications.  相似文献   

13.
A systematic investigation on the structural, optical, photo catalytic and antimicrobial properties of pure and cobalt doped ZnO nanoparticles synthesized by Co-precipitation method is presented. X-ray diffraction analysis of these samples showed the formation of phase pure nanoparticles with wurtzite ZnO structure. Optical studies showed a blue shift in the absorbance spectrum with increasing the doping concentration. The Methylene Blue (MB) decomposition rate of the synthesized pure ZnO and cobalt doped ZnO nanoparticles were studied under the UV region. In the UV region, synthesized pure ZnO and cobalt doped ZnO decomposed Methylene Blue (MB). However, the MB decomposition rate obtained using pure ZnO was much higher than that by doped ZnO. The antibacterial property test was carried out via disk diffusion method, and the result indicated antibacterial activity of the prepared samples.  相似文献   

14.
Herein, a facile low temperature, aqueous solution-based chemical method has been demonstrated for large-scale fabrication of Fe doped ZnO nanorods (ZnO:Fe) with a series percentage of Fe dopant. Interestingly, the SEM results reveal a uniform well dispersed synthesis of ZnO:Fe nanorods throughout the substrate. The x-ray diffraction result suggests that Fe substitutes Zn in the ZnO matrix and rules out the formation of any secondary phase. Selected area electron diffraction investigation verifies the single crystal, hexagonal wurtzite structure of the ZnO:Fe nanorods. Energy dispersive spectroscopy data confirm Fe doping of the ZnO nanorods with a concentration ranging from 0.9 to 2.2 at.%. The photoluminescence spectrum reveals a continuous suppression of defect related broad-band emission (I(D)/I(UV) = 1-0.11) by increasing the concentration of the dopant ion, which produces the quenching of surface defects present in the nanostructures. An enhancement in ferromagnetism (M = 0.15 × 10?2-0.24 × 10?1 emu g?1 at 2000 Oe) is found in doped ZnO nanorods.  相似文献   

15.
This paper briefly reports the structural and optoelectronics properties of prepared pure and Sb doped ZnO nanoparticles. Doping with suitable elements offers an efficient method to control and enhance the optical properties of ZnO nanoparticles, which is essential for various optoelectronics applications. Sb doped ZnO nanoparticles have significant concern due to their unique and unusual electrical and optical properties. In the present work, we report the synthesis of Sb doped ZnO successfully with average particle size range from 26 to 29 nm via direct precipitation method. The phase purity and crystallite size of synthesized ZnO and Sb doped nano-sized particles were characterized and examined via X-ray diffraction (XRD) and scanning electron microscopy (SEM). The elemental analyses of undoped and doped ZnO nanoparticles were examined by using energy-dispersive X-ray spectroscopy (EDAX).We investigated and measured the optoelectronics properties of synthesized ZnO and Sb doped ZnO nanoparticles by employing photoluminescence and UV–Visible spectroscopy. The influence of Sb doping on photoluminescence (PL) spectra of ZnO nanoparticles, which consists of UV emission and broad visible emission band, is found to be strongly dependent upon the Sb concentration for all the Sb doped ZnO nanoparticles samples under investigation. The UV–Visible absorption study shows an increase in band gap energy as Sb is incorporated on the ZnO nanoparticles.  相似文献   

16.
The Zinc oxide nanoparticles (ZnO NPs) and Magnesium doped ZnO nanoparticles (Mg doped ZnO NPs) are synthesized by Psidium guajava leaf extract. X-ray diffraction studies confirmed that, synthesized nanoparticles were retained the wurtzite hexagonal structure. In FESEM and HRTEM image analysis, ZnO and Mg doped ZnO NPs morphology were trigonal and spherical shape. Elemental compositions were identified by EDAX analysis. From FTIR result, the Zn–O stretching was observed at 453 and 448 cm?1 for both ZnO samples. In Raman spectra, the high intensive E2 high mode observed for 438 cm?1 for ZnO NPs. But Mg doped ZnO NPs intensity of E2 high mode decreased as compared to the pure ZnO NPs, it is due to the Mg2+ ion in to ZnO lattice site. The photoluminescence measurements revealed that the broad emission was composed of seven different bands due to zinc vacancies, oxygen vacancies and surface defects.  相似文献   

17.
Surfactant free ZnO and Cu doped ZnO nanorods were synthesized by hydrothermal method. The formation of ZnO:Cu nanorods were confirmed by scanning electron microscopy, X-ray diffraction and Raman analysis. Diffuse reflectance spectroscopy results shows that band gap of ZnO nanorods shifts to red with increase of Cu content. The orange-red photoluminescent emission from ZnO nanorods originates from the oxygen vacancy or ZnO interstitial related defects. ZnO:Cu nanorods showed strong ferromagnetic behavior, however at higher doping percentage of Cu the ferromagnetic behavior was suppressed and paramagnetic nature was enhanced. The presence of non-polar E 2 high and E 2 low Raman modes in nanorods indicates that Cu doping didn’t change the wurtzite structure of ZnO.  相似文献   

18.
Cu-doped ZnO nanoparticles were synthesized by a simple chemical method at low temperature with Cu:Zn atomic ratio from 0 to 5 %. The synthesis process was based on the hydrolysis of zinc acetate dehydrate and copper acetate tetrahydrate heated under reflux to 65 °C using methanol as a solvent. X-ray diffraction (XRD) analysis reveals that the Cu-doped ZnO crystallize in a wurtzite structure with a change of crystal size from 12 nm for undoped ZnO to 5 nm for Cu-doped ZnO. These nano size crystallites of Cu doped ZnO self-organized into microspheres. The XRD patterns, Scanning electron microscopy and transmission electron microscopy micrographs of doping of Cu in ZnO confirmed the formation of microspheres and indicated that the Cu2+ is successfully substituted into the ZnO host structure of the Zn2+ site. Cu doping shifts the absorption onset to blue from 373 to 350 nm, indicating an increase in the band gap from 3.33 to 3.55 eV. A relative increase in the intensity of the deep trap emission of Cu-doped ZnO is observed when increasing the concentration of Cu. Magnetic measurements indicate that Cu-doped ZnO samples are ferromagnetic at room temperature except pure ZnO.  相似文献   

19.
M. Nirmala  A. Anukaliani 《Materials Letters》2011,65(17-18):2645-2648
Antibacterial activity of Transition metals (Mn, Co) doped ZnO nanopowders prepared by a DC thermal plasma method against Escherichia coli and Staphylococcus aureus are investigated. The phase and morphology studies have been carried out by X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively. All the samples of the present investigation are found to have hexagonal wurtzite structure and crystallite sizes are found to vary from 25 nm to 30 nm. Our bacteriological study showed the enhanced antibacterial activity of transition metals doped ZnO nanoparticles than undoped ZnO indicating the great potential of ZnO nanoparticles in relevant clinical and biomedical applications.  相似文献   

20.
Ag deposited ZnO nanoparticles (NPs) have been synthesized by simple sol–gel method for visible light active photocatalytic application. X-ray diffraction (XRD), TEM, UV–DRS and PL studies have been used to characterize the photocatalyst. The results show that Ag/ZnO NPs are wurtzite phase (WZ) of ZnO with Ag NPs in the surface region forming a hetero-interface of Ag–WZ (ZnO). Visible light activity of the material has been studied using photocatalytic degradation kinetics of methylene blue as a probe pollutant. Ag/ZnO NPs exhibit five times higher visible-light driven photocatalytic activity than pristine ZnO and four times than the reference Degussa P-25, under identical conditions. The high visible activity of Ag/ZnO may be attributed to the surface plasmon effect complemented sensitization in the presence of metallic Ag and effective charge separation through Ag–WZ hetero-interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号