首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of co-sintering temperature on anode microstructure, electrolyte film microstructure, and final cell performance of tubular solid oxide fuel cells (SOFCs) were fully studied. The co-sintering of the NiO/YSZ anode-YSZ electrolyte double layers at temperature ranging from 1350 to 1400 °C for 5 h was carried out. Porosity and electrical conductivity were measured to examine the anodes microstructure, and the electrolyte films microstructure were characterized by scanning electronic microscope (SEM). A higher open current voltage (OCV) value of 0.99 V was achieved by co-sintering the cell at 1400 °C indicating denser electrolyte film, while the maximum power density of the cell co-sintered at 1380 °C was achieved with 322 mW cm−2 at 800 °C, which was higher than that (241.3 mW cm−2) of the cell co-sintered at 1400 °C because of better anode microstructure.  相似文献   

2.
The perovskite La0.6Sr0.4Co0.8Cu0.2O3−δ (LSCCu) oxide is synthesized by a modified Pechini method and examined as a novel cathode material for low-temperature solid oxide fuel cells (LT-SOFCs) based upon functional graded anode. The perovskite LSCCu exhibits excellent ionic and electronic conductivities in the intermediate-to-low-temperature range (400-800 °C). Thin Sm0.2Ce0.8O1.9 (SDC) electrolyte and NiO-SDC anode functional layer are prepared over macroporous anode substrates composed of NiO-SDC by a one-step dry-pressing/co-firing process. A single cell with 20 μm thick SDC electrolyte on a porous anode support and LSCCu-SDC cathode shows peak power densities of only 583.2 mW cm−2 at 650 °C and 309.4 mW cm−2 for 550 °C. While a cell with 20 μm thick SDC electrolyte and an anode functional layer on the macroporous anode substrate shows peak power densities of 867.3 and 490.3 mW cm−2 at 650 and 550 °C, respectively. The dramatic improvement of cell performance is attributed to the much improved anode microstructure that is confirmed by both SEM observation and impedance spectroscopy. The results indicate that LSCCu is a very promising cathode material for LT-SOFCs and the one-step dry-pressing/co-firing process is a suitable technique to fabricate high performance SOFCs.  相似文献   

3.
Intermediate temperature solid oxide fuel cells (ITSOFCs) supported by a porous Ni-substrate and based on Sr and Mg doped lanthanum gallate (LSGM) electrolyte, lanthanum strontium cobalt ferrite (LSCF) cathode and nanostructured yttria stabilized zirconia–nickel (YSZ/Ni) cermet anode have been fabricated successfully by atmospheric plasma spraying (APS). From ac impedance analysis, the sprayed YSZ/Ni cermet anode with a novel nanostructure and advantageous triple phase boundaries after hydrogen reduction has a low resistance. It shows a good electrocatalytic activity for hydrogen oxidation reactions. The sprayed LSGM electrolyte with ∼60 μm in thickness and ∼0.054 S cm−1 conductivity at 800 °C shows a good gas tightness and gives an open circuit voltage (OCV) larger than 1 V. The sprayed LSCF cathode with ∼30 μm in thickness and ∼30% porosity has a minimum resistance after being heated at 1000 °C for 2 h. This cathode keeps right phase structure and good porous network microstructure for conducting electrons and negative oxygen ions. The APS sprayed cell after being heated at 1000 °C for 2 h has a minimum inherent resistance and achieves output power densities of ∼440 mW cm−2 at 800 °C, ∼275 mW cm−2 at 750 °C and ∼170 mW cm−2 at 700 °C. Results from SEM, XRD, ac impedance analysis and IVP measurements are presented here.  相似文献   

4.
SrCe0.9Y0.1O3−δ (SCY10) powder with a pure perovskite phase is prepared by solid-state reaction method. NiO is dispersed uniformly in SCY10 powder to fabricate NiO-SCY10 anode substrate. The starting powder, the mixture of SrCO3, CeO2 and Y2O3, is deposited directly on the green substrate instead of SCY10 powder by spin coating. After co-firing at 1300 °C for 3 h, the starting powder reacts to form SCY10 top layer on the substrate. SEM micrographs show that the top layer is defect-free and adheres well with the anode substrate without any delamination. A single fuel cell is assembled with anode-supported SCY10 membrane as electrolyte membrane and Ag as cathode. The electrochemical property of the fuel cell is tested with hydrogen as fuel in the temperature range of 600-800 °C. The open circuit voltage (OCV) reaches 1.05 V at 800 °C, and the maximum power density is 50 mW cm−2, 155 mW cm−2, 200 mW cm−2 at 600 °C, 700 °C, 800 °C, respectively.  相似文献   

5.
GdBaCo2O5+x (GBCO) was evaluated as a cathode for intermediate-temperature solid oxide fuel cells. A porous layer of GBCO was deposited on an anode-supported fuel cell consisting of a 15 μm thick electrolyte of yttria-stabilized zirconia (YSZ) prepared by dense screen-printing and a Ni–YSZ cermet as an anode (Ni–YSZ/YSZ/GBCO). Values of power density of 150 mW cm−2 at 700 °C and ca. 250 mW cm−2 at 800 °C are reported for this standard configuration using 5% of H2 in nitrogen as fuel. An intermediate porous layer of YSZ was introduced between the electrolyte and the cathode improving the performance of the cell. Values for power density of 300 mW cm−2 at 700 °C and ca. 500 mW cm−2 at 800 °C in this configuration were achieved.  相似文献   

6.
The performance of a composite electrolyte composed of a samarium doped ceria (SDC) and a ternary eutectic carbonate melt phase was examined. The formation temperature of a continuous carbonate melt phase is crucial to the high conductivity of this material. The electrolyte contains 30 and 50 wt% carbonate exhibited a sharp increase of conductivity at a temperature close to the melting point of the eutectic carbonate, ca 400 °C, which is more than 100 °C lower than those electrolytes using binary carbonate. At around 650 °C, and with CO2/O2 used as the cathode gas, the fuel cell gave a power output 720 mW cm−2 at a current density 1300 mA cm−2. Water was measured in both the anode and cathode outlet gases and CO2 was detected in the anode outlet gas. When discharged at 800 mA cm−2, a stable discharge plateau was obtained. The CO2 in the cathode gas enhances the power output and the stability of the single cell. Based on these experimental facts, a ternary ionic conducting scheme is proposed and discussed.  相似文献   

7.
The LSGM(La0.8Sr0.2Ga0.8Mg0.2O3) electrolyte based intermediate temperature solid oxide fuel cells (ITSOFCs) supported by porous nickel substrates with different permeabilities are prepared by plasma spray technology for performance studies. The cell having a porous nickel substrate with a permeability of 3.4 Darcy, an LSCM(La0.75Sr0.25Cr0.5Mn0.5O3) interlayer on the nickel substrate, a nano-structured LDC(Ce0.55La0.45O2)/Ni anode functional layer, an LDC interlayer, an LSGM/LSCF(La0.58Sr0.4Co0.2Fe0.8O3) cathode interlayer and an LSCF cathode current collector layer shows remarkable electric output power densities such as 1270 mW cm−2 (800 °C), 978 mW cm−2 (750 °C) and 702 mW cm−2 (700 °C) at 0.6 V cell voltage under 335 ml min−1 H2 and 670 ml min−1 air flow rates. SEM, TEM, EDX, AC impedance, voltage and power data with related analyses are presented here to support this high performance. The durability test of the cell with the best power performance shows a degradation rate of about 3% kh−1 at the test conditions of 400 mA cm−2 constant current density and 700 °C. Results demonstrate the success of APS technology for fabricating high performance metal-supported and LSGM based ITSOFCs.  相似文献   

8.
In this study, the influences of different operational conditions such as cell temperature, sodium hydroxide concentration, oxidant conditions and catalyst loading on the performance of direct borohydride fuel cell which consisted of Pd/C anode, Pt/C cathode and Na+ form Nafion membrane as the electrolyte were investigated. The experimental results showed that the power density increased by increasing the temperature and increasing the flow rate of oxidant. Furthermore, it was found that 20 wt.% of NaOH concentration was optimum for DBFC operation. When oxygen was used as oxidant instead of air, better performance was observed. Experiments also showed that electrochemical performance was not considerably affected by humidification levels. An enhanced power density was found by increasing the loading of anodic catalyst. In the present study, a maximum power density of 27.6 mW cm−2 at a cell voltage of 0.85 V was achieved at 55 mA cm−2 at 60 °C when humidified air was used.  相似文献   

9.
A cathode-supported tubular solid oxide fuel cell (CTSOFC) with the length of 6.0 cm and outside diameter of 1.0 cm has been successfully fabricated via dip-coating and co-sintering techniques. A crack-free electrolyte film with a thickness of ∼14 μm was obtained by co-firing of cathode/cathode active layer/electrolyte/anode at 1250 °C. The relative low densifying temperature for electrolyte was attributed to the large shrinkage of the green tubular which assisted the densification of electrolyte. The assembled cell was electrochemically characterized with humidified H2 as fuel and O2 as oxidant. The open circuit voltages (OCV) were 1.1, 1.08 and 1.06 V at 750, 800 and 850 °C, respectively, with the maximum power densities of 157, 272 and 358 mW cm−2 at corresponding temperatures.  相似文献   

10.
The effects of the microstructural factors of electrodes, such as the porosity and pore size of anode supports and the thickness of cathodes, on the performance of an anode-supported thin film solid oxide fuel cell (TF-SOFC) are investigated. The performance of the TF-SOFC with a 1 μm-thick yttria-stabilized zirconia (YSZ) electrolyte is significantly improved by employing anode supports with increased porosity and pore size. The maximum power density of the TF-SOFCs increases from 370 mW cm−2 to 624 mW cm−2 and then to over 900 mW cm−2 at 600 °C with increasing gas transport at the anode support. Thicker cathodes also improve cell performance by increasing the active reaction sites. The maximum power density of the cell increases from 624 mW cm−2 to over 830 mW cm−2 at 600 °C by changing the thickness of the lanthanum strontium cobaltite (LSC) cathode from 1 to 2-3 μm.  相似文献   

11.
A dense single-layer YSZ film has been successfully fabricated by a spin smoothing method. Followed by a simplified slurry coating, an additional spin smoothing process was conducted to obtain a thinner and smoother film. By employment of high-viscosity slurry including high YSZ content, the film has a suitable thickness by a single coating cycle. With Sm0.2Ce0.8O1.9 (SDC)-impregnated La0.7Sr0.3MnO3 (LSM) cathode and porous NiO–YSZ anode, single solid oxide fuel cell (SOFC) based on an 8-μm-thick YSZ film was obtained. Open-circuit voltage (OCV) of the cell was 1.04 V at 800 °C, and maximum power densities were 676, 965 and 1420 mW cm−2 at 700, 750 and 800 °C, respectively, using H2 at a flow rate of 40 mL min−1 as fuel and ambient air as oxidant. The power density could be increased to 1648 mW cm−2 at 800 °C when the flow rate of H2 was enhanced to 200 mL min−1.  相似文献   

12.
The hybrid direct carbon fuel cell (HDCFC), combining molten carbonate fuel cell and solid oxide fuel cell technology, is capable of converting solid carbon directly into electrical energy without intermediate reforming. Here, we report the investigation of the HDCFC with yttria stabilized zirconia (YSZ) electrolyte, NiO-YSZ anode and lanthanum strontium manganite (LSM) cathode using the eutectic mixture of 62 mol% Li2CO3 and 38 mol% K2CO3. An open circuit voltage (OCV) of 0.71 V at 800 °C is recorded without the carbonate which increases to 1.15-1.23 V in the presence of the carbonate at the same temperature. In addition, the cell's OCV is enhanced not only by the thermal history but also by the carbonate, which is in excess of 1.57 V after the high temperature treatment. Electrochemical performance analysis indicates a suitable amount of the carbonate enhanced the carbon oxidation. With 1 mm robust thick electrolyte and commercial carbon, the cell (1.13 cm2 active area) generates the peak density of 50 mW cm−2 at 800 °C. There are significant losses from electrolyte resistance, which would be overcome by the application of a thinner electrolyte.  相似文献   

13.
A dense and uniform 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3YSZ) electrolyte film of 6 μm in thickness was fabricated by slurry spin coating on a porous NiO/3YSZ anode substrate. Composite cathodes of La0.7Sr0.3MnO3 impregnated with Sm0.2Ce0.8O1.9 were fabricated on the 3YSZ films. A single cell produced in this way was tested at 700, 750 and 800 °C with hydrogen as fuel and stationary air as oxidant. Test results revealed an open-circuit voltage of 1.04 V at 800 °C, and maximum power density of 551, 895 and 1143 mW cm−2 at 700, 750 and 800 °C, respectively. Impedance spectra results demonstrated that the cell performance was determined by the polarization resistance of the cathode.  相似文献   

14.
Cathode-supported solid oxide fuel cells (SOFCs), comprising porous Pr0.35Nd0.35Sr0.3MnO3−δ (PNSM)/Sm0.2Ce0.8O1.95 (SDC) cathode supports, SDC function layers, YSZ electrolyte membranes and NiO/SDC anode layers, were successfully fabricated via suspensions coating and single-step co-firing process. The microstructures of electrolyte membranes were observed with scanning electron microscope (SEM). The assembled single cell was electrochemically characterized with humidified hydrogen as fuel and ambient air as oxidant. The open circuit voltage (OCV) of the cell was 1.036 V at 650 °C, and the peak power densities were 657, 472, 290 and 166 mW cm−2 at 800, 750, 700 and 650 °C, respectively. Impedance analysis indicated that the performance of cathode-supported cell was determined essentially by electrode polarization resistance, which suggested that optimizing electrodes was especially important for improving the cell performance.  相似文献   

15.
A composite electrolyte containing a Li/Na carbonate eutectic and a doped ceria phase is employed in a direct carbon fuel cell (DCFC). A four-layer pellet cell, viz. cathode current collector (silver powder), cathode (lithiated NiO/electrolyte), electrolyte and anode current collector layers (silver powder), is fabricated by a co-pressing and sintering technique. Activated carbon powder is mixed with the composite electrolyte and is retained in the anode cavity above the anode current collector. The performance of the single cell with variation of cathode gas and temperature is examined. With a suitable CO2/O2 ratio of the cathode gas, an operating temperature of 700 °C, a power output of 100 mW cm−2 at a current density of 200 mA cm−2 is obtained. A mechanism of O2− and CO32− binary ionic conduction and the anode electrochemical process is discussed.  相似文献   

16.
A direct alkaline fuel cell with a liquid potassium hydroxide solution as an electrolyte is developed for the direct use of methanol, ethanol or sodium borohydride as fuel. Three different catalysts, e.g., Pt-black or Pt/Ru (40 wt.%:20 wt.%)/C or Pt/C (40 wt.%), with varying loads at the anode against a MnO2 cathode are studied. The electrodes are prepared by spreading the catalyst slurry on a carbon paper substrate. Nickel mesh is used as a current-collector. The Pt–Ru/C produces the best cell performance for methanol, ethanol and sodium borohydride fuels. The performance improves with increase in anode catalyst loading, but beyond 1 mg cm−2 does not change appreciably except in case of ethanol for which there is a slight improvement when using Pt–Ru/C at 1.5 mA cm−2. The power density achieved with the Pt–Ru catalyst at 1 mg cm−2 is 15.8 mW cm−2 at 26.5 mA cm−2 for methanol and 16 mW cm−2 at 26 mA cm−2 for ethanol. The power density achieved for NaBH4 is 20 mW cm−2 at 30 mA cm−2 using Pt-black.  相似文献   

17.
In this work, the benefit of compositionally grading a cathode functional layer (CFL) for solid oxide fuel cells (SOFCs) is explored. Cells are prepared wherein either a standard cathode functional layer (SCFL) or a linearly compositionally graded cathode functional layer (CGCFL) is placed between the cell electrolyte and cathode current collecting regions. The electrochemical performance of these cells is compared with a SOFC cell containing no CFL. All cells are fabricated using a pressurized dual-suspension spraying system. Electrolytes, cathode functional layer, and cathode current collecting materials are deposited on a powder compacted anode support. SEM and EDAX area maps are taken to study the resulting micro-structures and to verify that the desired CFL profiles are produced. The EDAX area map verifies that a compositionally graded CFL and a SCFL are obtained. The cells are analyzed using impedance spectroscopy to evaluate the electrochemical performances of each cell. The open circuit voltage (OCV) and peak power densities of all three cells are 1.04 V with 80 mW cm−2, 1.12 V with 108 mW cm−2, and 1.08 V with 193 mW cm−2 at 850 °C for the SCFL cell, the cell without a CFL, and the compositionally graded CFL cell respectively. The results show that this approach is a viable means for producing SOFC functional layers with unique composition and interfacial properties.  相似文献   

18.
In this study, an anode-supported hollow-fiber solid oxide fuel cell (SOFC) of diameter 1.7 mm has been successfully fabricated using the phase inversion and vacuum assisted coating techniques. The cell has a special structure consisting of a 12-μm-thick yttria-stabilized zirconia (YSZ) electrolyte film and a Ni-YSZ anode layer which has large finger-like pores on both sides of the hollow-fiber membrane. The hollow-fiber SOFC has an active electrode area of 0.63 cm2 and generates maximum power densities of 124, 287 and 377 mW cm−2 at 600, 700 and 800 °C, respectively, indicating that its use in applications requiring high power density is promising.  相似文献   

19.
A slurry spin coating method was developed to fabricate gas-tight anode-supported YSZ films for solid oxide fuel cells (SOFCs). Several technique parameters for slurry spin coating, such as the slurry viscosity, spinning speed, number of coating cycles, film thickness and their effects on YSZ electrolyte film were investigated. SEM results, open-circuit voltage (OCV) values and cell performance indicated that these parameters had crucial and obvious influences on YSZ film quality and fuel cell performance. Based on the optimized parameters, anode-supported YSZ films and several single fuel cells were successfully fabricated and tested. An OCV as high as 1.06 V was obtained at 800 °C and maximum power densities of 900, 1567, 2005 mW cm−2 were achieved at 700, 750, 800 °C, respectively, using hydrogen as fuel and ambient air as oxidant.  相似文献   

20.
A direct carbon fuel cell based on a conventional anode-supported tubular solid oxide fuel cell, which consisted of a NiO-YSZ anode support tube, a NiO-ScSZ anode functional layer, a ScSZ electrolyte film, and a LSM-ScSZ cathode, has been successfully achieved. It used the carbon black as fuel and oxygen as the oxidant, and a preliminary examination of the DCFC has been carried out. The cell generated an acceptable performance with the maximum power densities of 104, 75, and 47 mW cm−2 at 850, 800, and 750 °C, respectively. These results demonstrate the feasibility for carbon directly converting to electricity in tubular solid oxide fuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号