首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to reduce the cost, weight and volume of the bipolar plates, considerable attention is being paid to developing metallic bipolar plates to replace the non-porous graphite bipolar plates that are in current use. However, metals are prone to corrosion in the proton exchange membrane (PEM) fuel cell environments, which decreases the ionic conductivity of the membrane and lowers the overall performance of the fuel cells. In this study, TiN was coated on SS316L using a physical vapor deposition (PVD) technology (plasma enhanced reactive evaporation) to increase the corrosion resistance of the base SS316L. X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical methods were used to characterize the TiN-coated SS316L. XRD showed that the TiN coating had a face-centered-cubic (fcc) structure. Potentiodynamic tests and electrochemical impedance tests showed that the corrosion resistance of SS316L was significantly increased in 0.5 M H2SO4 at 70 °C by coating with TiN. In order to investigate the suitability of these coated materials as cathodes and anodes in a PEMFC, potentiostatic tests were conducted under both simulated cathode and anode conditions. The simulated anode environment was −0.1 V versus SCE purged with H2 and the simulated cathode environment was 0.6 V versus SCE purged with O2. In the simulated anode conditions, the corrosion current of TiN-coated SS316L is −4 × 10−5 A cm−2, which is lower than that of the uncoated SS316L (about −1 × 10−6 A cm−2). In the simulated cathode conditions, the corrosion current of TiN-coated SS316L is increased to 2.5 × 10−5 A cm−2, which is higher than that of the uncoated SS316L (about 5 × 10−6 A cm−2). This is because pitting corrosion had taken place on the TiN-coated specimen.  相似文献   

2.
Metallic bipolar plates are one of the promising alternatives to the graphite bipolar plates in proton exchange membrane fuel cell (PEMFC) systems. In this study, stainless steel (SS304, SS316L, and SS430), nickel (Ni 270), and titanium (Grade 2 Ti) plates with an initial thickness of 51 μm were experimented as bipolar plate substrate materials in corrosion resistance tests. In addition to unformed blanks, SS316L plates were formed with stamping and hydroforming processes to obtain bipolar plates under different process conditions (stamping force, hydroforming pressure, stamping speed, hydroforming pressure rate). These bipolar plates, then, were subjected to corrosion tests, and the results were presented and discussed in detail. Potentiodynamic polarizations were performed to observe corrosion resistance of metallic bipolar plates by simulating the anodic and cathodic environments in the PEMFC. In order to determine the statistical significance of the corrosion resistance differences between different manufacturing conditions, analysis of variance (ANOVA) technique was used on the corrosion current density (Icorr, μA cm−2) values obtained from experiments. ANOVA for the unformed substrate materials indicated that SS430 and Ni have less corrosion resistance than the other substrate materials tested. There was a significant difference between blank (unformed) and stamped SS316L plates only in the anodic environment. Although there was no noteworthy difference between unformed and hydroformed specimens for SS316L material, neither of these materials meet the Department of Energy‘s (DOE) target corrosion rate of ≤1 μA cm−2 by 2015 without coating. Finally, stamping parameters (i.e. speed and force levels) and hydroforming parameters (i.e. the pressure and pressure rate) significantly affected the corrosion behavior of bipolar plates.  相似文献   

3.
The lower temperature chromizing treatment is developed to modify 316L stainless steel (SS 316L) for the application of bipolar plate in proton exchange membrane fuel cell (PEMFC). The treatment is performed to produce a coating, containing mainly Cr-carbide and Cr-nitride, on the substrate to improve the anticorrosion properties and electrical conductivity between the bipolar plate and carbon paper. Shot peening is used as the pretreatment to produce an activated surface on stainless steel to reduce chromizing temperature. Anticorrosion properties and interfacial contact resistance (ICR) are investigated in this study. Results show that the chromized SS 316L exhibits better corrosion resistance and lower ICR value than those of bare SS 316L. The chromized SS 316L shows the passive current density about 3E−7 A cm−2 that is about four orders of magnitude lower than that of bare SS 316L. ICR value of the chromized SS 316L is 13 mΩ cm2 that is about one-third of bare SS 316L at 200 N cm−2 compaction forces. Therefore, this study clearly states the performance advantages of using chromized SS 316L by lower temperature chromizing treatment as bipolar plate for PEMFC.  相似文献   

4.
A nickel-rich layer about 100 μm in thickness with improved conductivity was formed on the surface of austenitic stainless steel 316L (SS316L) by ion implantation. The effect of ion implantation on the corrosion behavior of SS316L was investigated in 0.5 M H2SO4 with 2 ppm HF solution at 80 °C by potentiodynamic test. In order to investigate the chemical stability of the ion implanted SS316L, the potentiostatic test was conducted in an accelerated cathode environment and the solutions after the potentiostatic test were analyzed by inductively coupled plasma atomic emission spectrometer (ICP-AES). The results of potentiodynamic test show that the corrosion potential of SS316L is shifted toward the positive direction from −0.3 V versus SCE to −0.05 V versus SCE in anode environment and the passivation current density at 0.6 V is reduced from 11.26 to 7.00 μA cm−2 in the cathode environment with an ion implantation dose of 3 × 1017 ions cm−2. The potentiostatic test results indicate that the nickel implanted SS316L has higher chemical stability in the accelerated cathode environment than the bare SS316L, due to the increased amount of metallic Ni in the passive layer. The ICP results are in agreement with the electrochemical test results that the bare SS316L has the highest dissolution rate in both cathode and anode environments and the Ni implantation markedly reduces the dissolution rate. A significant improvement of interfacial contact resistance (ICR) is achieved for the SS316L implanted with nickel as compared to the bare SS316L, which is attributed to the reduction in passive layer thickness caused by the nickel implantation. The ICR values for implanted specimens increase with increasing dose.  相似文献   

5.
The effect of temperature on the corrosion behavior of SS316L in simulated proton exchange membrane fuel cell (PEMFC) environments has been systematically studied. Electrochemical methods, both potentiodynamic and potentiostatic, are employed to characterize the corrosion behavior. Atomic force microscope (AFM) is used to examine the surface morphology and X-ray photoelectron spectroscopy (XPS) analysis is used to identify the composition and the depth profile of the passive film. Photo-electrochemical (PEC) measurements are also performed to determinate the band gap energy of the passive film semiconductor. Interfacial contact resistances (ICR) between polarized SS316L and carbon paper are also measured. The experimental results show that corrosion resistance decreases with temperatures even though the thickness of passive film increases with temperature, at a given cell potential, the corrosion behavior of SS316L can be significantly different at different temperatures in PEMFC cathode environments, and the band gap of passive films decrease with temperature. The results also show that within the temperature range studied (25-90 °C), after different passivation time, the corrosion current densities of SS316L are all lower than the US DOE 2015 target value of 1 μA cm−2, but the ICR between the carbon paper and polarized SS316L does not satisfy the US DOE 2015 target.  相似文献   

6.
A reforming pack chromization with rolling pretreatment process is utilized to develop inexpensive and high-performance Fe-based metal bipolar plates (SS 420, SS 430, and SS 316 stainless steels) for PEMFC systems. Rolling process is previously performed to reduce the chromizing temperature and generate a coating possessing excellent conductivity and corrosion resistance on the steels during chromization. The power efficiencies of rolled-chromized and simple chromized bipolar plates are compared with graphite bipolar plates employed in PEMFCs. The results show that the rolled-chromized bipolar plates have a corrosion current (Icorr) of 7.87 × 10−8 A cm−2 and an interfacial contact resistance of 9.7 mΩ cm2. Moreover, the power density of the single cell assembled with rolled-chromized bipolar plates is 0.46 W cm−2, which is very close to that of graphite (0.50 W cm−2), in the tested conditions of this study.  相似文献   

7.
Corrosion resistance performance of SS316L treated by passivation solution was investigated in a simulated environment of the passive direct methanol fuel cell (DMFC). Electrochemical impedance spectroscopic (EIS) test showed that polarization resistance of untreated and treated SS316L were 1191 Ω cm2 and 9335 Ω cm2, respectively. The above result agreed with the Tafel slope analysis of potentiodynamic polarization curves. Comparing the untreated and treated SS316L in the simulated environment of DMFC anode working conditions, it was observed that the corrosion current density of treated SS316L as estimated by 4000 s potentiostatic test reduced from 38.7 μA cm−2 to 0.297 μA cm−2, meanwhile, the current densities of untreated and treated SS316L in cathode working conditions were 3.87 μA cm−2 and 0.223 μA cm−2, respectively. It indicated that the treated SS316L should be suitable in both anode and cathode environment of passive DMFCs. The treated SS316L bipolar plates have been assembled in a passive single fuel cell. A peak power density of 1.18 mW cm−2 was achieved with 1 M methanol at ambient temperature.  相似文献   

8.
The bipolar plate in polymer electrolyte membrane (PEM) fuel cell helps to feed reactant gases to the membrane electrode assembly (MEA) and collect current from the MEA. To facilitate these functions, the bipolar plate material should exhibit excellent electrical conductivity and corrosion resistance under fuel cell operating conditions, and simultaneously be of low-cost to meet commercialization enabling targets for automotive fuel cells. In the present work, we focus on the benchmarking of 10 nm gold coated SS316L (a.k.a. Au Nanoclad®) bipolar plate material through ex situ tests, which is provided by Daido Steel (Japan). The use of nanometer range Au coatings help to retain the noble properties of gold while significantly reducing the cost of the bipolar plate. The area specific resistance of the flat sample is 0.9 mΩ cm2 while that for the formed bipolar plate is 6.3 mΩ cm2 at compaction force of 60 N cm−2. The corrosion current density was less than 1 μA cm−2 at 0.8 V/NHE with air sparge simulating cathodic conditions. Additionally, gold coated SS316L showed anodic passivation of SS316L, thereby exhibiting robustness towards coating defects including surface scratches that may originate during the manufacturing of the bipolar plate. These series of ex situ tests indicate that 10 nm gold coated SS316L has good potential to be considered for commercial bipolar plates in automotive fuel cell stack.  相似文献   

9.
Tantalum nitride (TaN) thin films are deposited on AISI 316L stainless steel by inductively coupled, plasma-assisted, reactive magnetron sputtering at various N2 flow rates. TaN film behavior is investigated in simulated polymer electrolyte membrane fuel cell (PEMFC) conditions by using electrochemical measurement techniques for application as bipolar plates. The results of a potentio-dynamic polarization test under PEMFC cathodic and anodic conditions indicate that the corrosion current density of the TaNx films is of the order of 10−7 A cm−2 (at 0.6 V) and 10−8 A cm−2 (at −0.1 V), respectively; these results are considerably better than the individual results for metallic Ta films and AISI 316L stainless steel. The TaNx films exhibit superior stability in a potentio-static polarization test performed under PEMFC cathodic and anodic conditions. The interfacial contact resistance of the films is measured in the range of 50-150 N cm−2, and the lowest value is 11 mΩ cm2 at a compaction pressure of 150 N cm−2.  相似文献   

10.
In order to determine the suitability of SS316L as a bipolar plate material in proton exchange membrane fuel cells (PEMFCs), its corrosion behavior is studied under different simulated PEMFC cathode corrosion conditions. Solutions of 1 × 10−5 M H2SO4 with a wide range of different F concentrations at 70 °C bubbled with air are used to simulate the PEMFC cathode environment. Electrochemical methods, both potentiodynamic and potentiostatic, are employed to study the corrosion behavior. Scanning electron microscopy (SEM) is used to examine the surface morphology of the specimen after it is potentiostatic polarized under simulated PEMFC cathode environments. Auger electron spectroscopy (AES) analysis is used to identify the composition and the depth profile of the passive film formed on the SS316L surface after it is polarized in simulated PEMFC cathode environments. Photo-electrochemical (PEC) method and capacitance measurements are used to characterize the semiconductor passive films. The results of both the potentiodynamic and potentiostatic analyses show that corrosion currents increase with F concentrations. SEM examination results indicate that pitting occurs under all the conditions studied and pitting is more severe with higher F concentrations. From the results of AES analysis, PEC analysis and the capacitance measurements, it is determined that the passive film formed on SS316L is a bi-layer semiconductor, similar to a p-n heterojunction consisting of an external n-type iron oxide rich semiconductor layer (electrolyte side) and an internal p-type iron-chromium oxide semiconductor layer (metal side). Further analyses of the experimental results reveal the electronic structure of the passive film and shed light on the corrosion mechanisms of SS316L in the PEMFC cathode environment.  相似文献   

11.
In this study, the contact resistance (CR) and electrochemical properties of TiN, CrN and TiAlN electron beam physical vapor deposition (EBPVD) coatings and their stainless steel 316L (SS316L) substrate were investigated in a simulated proton exchange membrane (PEM) fuel cell environment. The potentiodynamic polarization corrosion tests were conducted at 70 °C in 1 M H2SO4 purged with either O2 or H2, and the potentiostatic corrosion tests were performed under both simulated cathodic (+0.6 V vs. Ag/AgCl reference electrode purged with O2) and anodic conditions (−0.1 V vs. Ag/AgCl reference electrode purged with H2) for a long period (4 h). SEM was used to observe the surface morphologies of the samples after corrosion testing. All the TiN-, TiAlN- and CrN-coated SS316L showed a lower CR than the uncoated SS316L. While the corrosion performance of the coatings was dependent on the cathodic and anodic conditions, the CrN coating exhibited a higher (in the anodic environment) or similar (in the cathodic environment) corrosion resistance to the uncoated SS316L. Thus, the CrN-coated SS316L could potentially be used as a bipolar plate material in the PEM fuel cell environment. Although the EBPVD process greatly reduced number of pinholes in the coatings compared to other plasma enhanced reactive evaporations, future research efforts should be directed to eliminate the pinholes in the coatings for long-term durability in fuel cell applications.  相似文献   

12.
Amorphous carbon (a-C) film about 3 μm in thickness is coated on 316L stainless steel by close field unbalanced magnetron sputter ion plating (CFUBMSIP). The AFM and Raman results reveal that the a-C coating is dense and compact with a small size of graphitic crystallite and large number of disordered band. Interfacial contact resistance (ICR) results show that the surface conductivity of the bare SS316L is significantly increased by the a-C coating, with values of 8.3–5.2 mΩ cm2 under 120–210 N/cm2. The corrosion potential (Ecorr) shifts from about −0.3 V vs SCE to about 0.2 V vs SCE in both the simulated anode and cathode environments. The passivation current density is reduced from 11.26 to 3.56 μA/cm2 with the aid of the a-C coating in the simulated cathode environment. The a-C coated SS316L is cathodically protected in the simulated anode environment thereby exhibiting a stable and lower current density compared to the uncoated one in the simulated anode environment as demonstrated by the potentiostatic results.  相似文献   

13.
Metallic bipolar plates look promising for the replacement of graphite due to higher mechanical strength, better durability to shocks and vibration, no gas permeability, acceptable material cost and superior applicability to mass production. However, the corrosion and passivation of metals in environments of proton exchange membrane fuel cell (PEMFC) cause considerable power degradation. Great attempts were conducted to improve the corrosion resistance of metals while keeping low contact resistance. In this paper, a simple, novel and cost-effective high-energy micro-arc alloying process was employed to prepare compact titanium carbide as coatings for the type 304 stainless steel bipolar plates with a metallurgical bonding between the coating and substrate. It was found that TiC coating increased the corrosion potential of the bare steel in 1 M H2SO4 solution at room temperature by more than 200 mV, and decreased significantly its corrosion current density from 8.3 μA cm−2 for the bare steel to 0.034 μA cm−2 for the TiC-coated steel. No obvious degradation was observed for the TiC coatings after 30-day exposure in solution.  相似文献   

14.
Chromium nitride/Cr coating has been deposited on surface of 316L stainless steel to improve conductivity and corrosion resistance by physical vapor deposition (PVD) technology. Electrochemical behaviors of the chromium nitride/Cr coated 316L stainless steel are investigated in 0.05 M H2SO4 + 2 ppm F simulating proton exchange membrane fuel cell (PEMFC) environments, and interfacial contact resistance (ICR) are measured before and after potentiostatic polarization at anodic and cathodic operation potentials for PEMFC. The chromium nitride/Cr coated 316L stainless steel exhibits improved corrosion resistance and better stability of passive film either in the simulated anodic or cathodic environment. In comparison to 316L stainless steel with air-formed oxide film, the ICR between the chromium nitride/Cr coated 316L stainless steel and carbon paper is about 30 mΩ cm2 that is about one-third of bare 316L stainless steel at the compaction force of 150 N cm−2. Even stable passive films are formed in the simulated PEMFC environments after potentiostatic polarization, the ICR of the chromium nitride/Cr coated 316L stainless steel increases slightly in the range of measured compaction force. The excellent performance of the chromium nitride/Cr coated 316L stainless steel is attributed to inherent characters. The chromium nitride/Cr coated 316L stainless steel is a promising material using as bipolar plate for PEMFC.  相似文献   

15.
Anticorrosion coating for stainless steel (SS) and titanium bipolar plates were evaluated to improve the corrosion resistance and electrical conductivity in PEMFC. The PEMFC offers clean and environmentally friendly usage in electrical power systems. The bipolar plates contribute 60%–80% of the total components of PEMFC stack with electrical conductivity >100 S cm?1. Therefore, high conductivity and corrosion resistance are observed for long-term operations in PEMFC. Recent works has developed the cost-effective and feasible alternative materials to replace graphite bipolar plates. Metallic materials, such as SS and titanium, possess good electrical conductivity but poor corrosion resistance. Coating of SS and titanium bipolar plates can improve the corrosion resistance of metallic bipolar plates. Excellent performance of bipolar plates was recorded by using NbC coating for stainless steel materials. The ICR value using plasma surface alloying method was 8.47 mΩ cm2 with a low current density (Icorr) between 0.051 and 0.058 μA cm?2. The criteria for both current densities (<1 μA cm?2) and electrical conductivity (<10 mΩ cm2) met the DOE's 2020 technical targets. In addition, conventional air brush method can be used for fabricating multilayer coatings onto substrates because it is self-cleaning, low cost and offers high volume and large area production. Vapor deposition method, a highly advanced coating technology using PVD, suitable for coating bipolar plates because it is environmentally friendly and can be used in high temperatures, producing materials with good impact strength and excellent abrasion resistance. PEMFC cost is still too high for large scale commercialization, which is the cost of raw material and processing to allow fabrication of thinner plates contributes substantially to the total PEMFC cost. Some future works on fuel cell anticorrosion research with reasonable coating method is suggested to reduce the cost in order to facilitate the move toward commercialization especially for SS and titanium bipolar plates.  相似文献   

16.
The present work was focused on the corrosion properties and contact resistance behavior of poly(orthophenlyenediamine) (PoPD) coating on 316L SS bipolar plates. To reduce the corrosion rate and increase the interfacial conductivity of 316L SS bipolar plates, PoPD coating was deposited using an electropolymerization technique by the various monomer concentration of orthophenlyenediamine (oPD) on its surface. The presence of 1, 2, 4, 5- tetra substituted benzene nuclei of phenazine units in the polymer coating was confirmed by infrared spectroscopy. X-ray photoelectron spectroscopy analysis has confirmed the (%) of chemical composition in PoPD coating. The results of scanning electron microscopy analysis revealed that the uniform and compact coating with complete cover on 316L SS. The corrosion properties were investigated in 0.5 M H2SO4 and 2 ppm HF solution at 80 °C. The polarization test results showed that the PoPD coating reduced the corrosion current density both in the PEMFC anode and cathode environments. The charge transfer resistance values were in the order of 316L SS ? 0.02 M PoPD ? 0.06 M PoPD ? 0.04 M PoPD. A very low interfacial contact resistance and good adhesion strength was observed for 0.04 M PoPD coating. The higher contact angle of 0.04 M PoPD coating explained the hydrophobic property and more benefit of water management in the PEMFC environment. The results of the analysis of total metal ion releases clearly explained that the low level of metal ions released for 0.04 M PoPD coating. The overall studies revealed the PoPD coating with optimized 0.04 M oPD concentration showed best performance and provided more anodic protection to 316L SS bipolar plates.  相似文献   

17.
Carbon film has been deposited on 304 stainless steel (SS304) using close field unbalanced magnetron sputter ion plating (CFUBMSIP) to improve the corrosion resistance and electrical conductivity of SS304 acting as bipolar plates for proton exchange membrane fuel cells (PEMFCs). The corrosion resistance, interfacial contact resistance (ICR), surface morphology and contact angle with water of the bare and carbon-coated SS304 are investigated. The carbon-coated SS304 shows good corrosion resistance in the simulated cathode and anode PEMFC environment. The ICR between the carbon-coated SS304 and the carbon paper is 8.28-2.59 mΩ cm2 under compaction forces between 75 and 360 N cm−2. The contact angle of the carbon-coated SS304 with water is 88.6°, which is beneficial to water management in the fuel cell stack. These results indicate that the carbon-coated SS304 exhibits high corrosion resistance, low ICR and hydrophobicity and is a promising candidate for bipolar plates.  相似文献   

18.
In this study, 304 stainless steel (SS) bipolar plates are fabricated by flexible forming process and an amorphous carbon (a-C) film is coated by closed field unbalanced magnetron sputter ion plating (CFUBMSIP). The interfacial contact resistance (ICR), in-plane conductivity and surface energy of the a-C coated 304SS samples are investigated. The initial performance of the single cell with a-C coated bipolar plates is 923.9 mW cm−2 at a cell voltage of 0.6 V, and the peak power density is 1150.6 mW cm−2 at a current density of 2573.2 mA cm−2. Performance comparison experiments between a-C coated and bare 304SS bipolar plates show that the single cell performance is greatly improved by the a-C coating. Lifetime test of the single cell over 200 h and contamination analysis of the tested membrane electrode assemble (MEA) indicate that the a-C coating has excellent chemical stability. A 100 W-class proton exchange membrane fuel cell (PEMFC) short stack with a-C coated bipolar plates is assembled and shows exciting initial performance. The stack also exhibits uniform voltage distribution, good short-term lifetime performance, and high volumetric power density and specific power. Therefore, a-C coated 304SS bipolar plates may be practically applied for commercialization of PEMFC technology.  相似文献   

19.
Stainless steels as proton exchange membrane fuel cell bipolar plates have received extensive attention in recent years. The pack chromizing layer was fabricated on 316L stainless steel to improve the corrosion resistance and electrical conductivity. The corrosion properties were investigated in 0.5 M H2SO4 + 2 ppm HF solution at 70 °C purged with hydrogen gas and air. Higher electrochemical impedance and more stable passive film were obtained by chromizing the 316L stainless steel. Potentiodynamic polarization results showed the corrosion current densities were reduced to 0.264  μA cm−2 and 0.222  μA cm−2 in two simulated operating environments. In addition, the interfacial contact resistance was decreased to 1.4 mΩ⋅cm2 under the compaction force of 140 N⋅cm−2 and maintained at low values after potentiostatic polarization for 4 h. The excellent corrosion and conductive performances could be attributed to the chromium carbides and high alloying element content in chromizing layer.  相似文献   

20.
Bipolar plates (BPPs) made of stainless steels preferred in PEM Fuel Cell (PEMFC) applications due to their high electrical conductivity, low material and production costs, low weight and mechanical strength. However, their corrosion resistances are not at desired levels for real PEMFC working conditions. To overcome this issue, different coating types are suggested. In this study, corrosion resistance behavior of 51 μm-thick SS316L metallic bipolar plates that were coated with the three different PVD coatings (TiN, CrN, and ZrN) at three thicknesses (0.1 μm, 0.5 μm, and 1 μm), and then were formed with two different manufacturing processes (stamping and hydroforming) investigated. Potentiodynamic and potentiostatic corrosion experiments were performed on the coated-formed SS316L plates, and coated-unformed blanks. Corrosion test results indicate that 1 μm ZrN coating demonstrated the highest corrosion resistance among the tested cases regardless of the manufacturing process employed. Moreover, hydroformed bipolar plates exhibited higher corrosion resistance than the stamped BPPs, but lower than the blank samples. Hardness measurements were also performed on the coated samples and resulted in higher corrosion resistance for harder surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号