首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of several commercial iron ores usually employed as pigments, to store and supply pure hydrogen by means of the steam-iron process has been proposed and analyzed. The process roughly consists in repeated series of alternate reduction and oxidation steps in which a reducing stream (H2 + CO, or in general H2 enriched fuels) reacts with the iron oxide rendering the metal or a partially reduced oxide. Pure hydrogen is released during the re-oxidation with steam. The studied iron ores contain some impurities that accounting minor percentages (<10 wt%) enhance the behaviour of the solid. This improvement regards not only to the reduction and oxidation rate, but especially to the ability of the solid to maintain a given redox capacity along cycles. Also concerning this topic, the effect of the presence of these natural additives has been investigated in order to determine the inert behaviour of methane as a potential reducing agent. This study allowed the determination of the maximum temperature at which carbon formation is inhibited so that the subsequent released hydrogen will not be contaminated by carbon compounds.  相似文献   

2.
Chemical looping has been proposed as an emerging technology for large-scale hydrogen storage with the advantages of high volumetric hydrogen storage density, environmental compatibility, and safety. However, to ensure sufficient redox activity, conventional oxygen carrier materials must be operated at a temperature higher than 800 °C, leading to the rapid deterioration on the storage capacity over several cycles. In this work, we report a ternary ferrite-spinel material Cu0.5Co0.5Fe2O4 for chemical looping hydrogen storage and production. The material exhibits high volumetric hydrogen storage density (65.58 g·L−1) and average hydrogen production rate (142 μmol·g−1·min−1) at 550 °C. The performance is maintained with negligible deactivation over repetitive redox cycles. The high performance can be attributed to the ability of Cu and Co to improve the reduction and the reversible phase change during the oxidation stage at moderate temperatures. The performance of the Cu0.5Co0.5Fe2O4 is comparable to the state-of-the-art Rh-FeOx containing rare earth metals, which enables its potential in industry application.  相似文献   

3.
Two step water-splitting cycles by using metal ferrites are considered as a clean and sustainable hydrogen production method, when concentrated solar energy is used to drive the thermochemical reactions. This process involves the reduction at very high temperature of the ferrite, followed by the water reoxidation to the original phase at moderate temperature, with the release of hydrogen. In order to decrease the temperature required to decompose the oxide, mixed ferrites of the type MFe2O4 with spinel crystal structure have been examined. In this sense, ferrites with the partial substitution of Co and Ni for Fe appear as successful materials in terms of hydrogen production and cyclability. In this work, commercial Ni and synthetic Co ferrites have been subjected to two water splitting cycles. The solid products obtained after thermal reduction and water decomposition reactions have been chemically and structurally characterized by WDXRF, XRD, XPS and SEM techniques, in order to get a deeper understanding of the mechanisms controlling the water splitting process. This knowledge contributes to improve the process involved in thermochemical cycles and to understand the lower efficiencies (H2/O2) for Co ferrite thermochemical cycles in comparison with those corresponding to Ni ferrite.  相似文献   

4.
Current challenge for researchers worldwide is to construct a reliable, efficient, and affordable medium that can store hydrogen reversibly at ambient temperature and pressure for on-board applications. Carbon nanotubes (CNTs) and their composites are considered as leading source of solid-state reversible hydrogen storage medium owing to its unique characteristics including high surface area, nanoporous structure, tuneable properties, low mass density, cage like structure, chemical stability, dissociation of hydrogen molecule, and easy synthesis method. Nanocrystalline metal or metal oxide or hydride is doped/embedded into pristine CNTs via in-situ reduction, wetness impregnation, high-energy ball milling and sputtering method. Characterization techniques of pristine and composites are utilized to study morphological, thermal, qualitative, quantative, and elemental analysis. Nanocomposite hydrogen uptake capacity is frequently measured by volumetric and gravimetric methods. Multifold enhancement of hydrogen storage of composites compared to pristine CNTs is attributed to activation, acidification, purification, ball milling and spillover of physisorbed hydrogen by metal catalyst onto CNTs via spillover mechanism. Hydrogen uptake of CNTs and composites follow monotonous dependence on hydrogen pressure. Composites not only present high hydrogen uptake as compared to pristine CNTs but also shows significant cyclic stability upon successive adsorption–desorption cycles.  相似文献   

5.
Intermetallic alloys such as AB, AB2, and AB5 type have been studied due to their capability to reversibly store hydrogen. These alloys exhibit varying hydrogen storage properties depending on the crystal structure and composition. Compositional modification is commonly known as an effective method to modify the alloys thermodynamic and kinetics for various applications such as metal hydride batteries, metal hydrides hydrogen storage and compression. However, the effects of the compositional modification on the cyclic stability of these alloys are not usually well studied.Here, the hydrogen cycling stabilities of Ti-Mn based alloys with C14 type structure are studied. Hyper-stoichiometry, stoichiometry and hypo-stoichiometry alloys were prepared accordingly: Ti30.6V16.4Mn48.7 (Zr0.7Cr0.8Fe2.8) (B/A = 2.19), Ti32.8V15.1Mn47.1 (Zr0.9Cr1.2Fe2.9) (B/A = 1.97) and Ti34.5V15.4Mn44.7 (Zr0.9Cr1.3Fe3.2) (B/A = 1.87). Whilst the hyper-stoichiometry alloy showed almost a stable (about 9% capacity reduction) hydrogen capacity after 1000 cycles of hydrogenation and dehydrogenation, the stoichiometry and hypo-stoichiometry alloys failed to hydrogenate after about 950 and 500 cycles respectively. A limited reduction in the calculated crystalline size of the alloys was observed before and after the hydrogen cycling, denoting that pulverisation plays a less significant role on the observed hydrogen capacity loss. In addition, a reduction in the B/A ratio from 2.19 to 1.82 (hyper to hypo-stoichiometry) encouraged the formation of more stable hydride and a higher level of heterogeneous lattice strain. Whilst a small loss of hydrogen capacity (9%) in the hyper-stoichiometry alloy was attributed to the trapped hydrogen, the complete loss of hydrogen capacity in the stoichiometry and hypo-stoichiometry alloys seemed to originate from the formation of stable hydride and the lattice distortion.  相似文献   

6.
Mg-based materials have been widely researched for hydrogen storage development due to the low price of Mg, abundant resources of Mg element in the earth's crust and the high hydrogen capacity (ca. 7.7 mass% for MgH2). However, the challenges of poor kinetics, unsuitable thermodynamic properties, large volume change during hydrogen sorption cycles have greatly hindered the practical applications. Here in this review, our recent achievements of a new research direction on Mg-based metastable nano alloys with a Body-Centered Cubic (BCC) lattice structure are summarized. Different with other metals/alloys/complex hydrides etc. which involve significant lattice structure and volume change from hydrogen introduction and release, one unique nature of this kind of metastable nano alloys is that the lattice structure does not change obviously with hydrogen absorption and desorption, which brings interesting phenomenon in microstructure properties and hydrogen storage performances (outstanding kinetics at low temperature and super high hydrogen capacity potential). The synthesis results, morphology and microstructure characterization, formation evolution mechanisms, hydrogen storage performances and geometrical effect of these metastable nano alloys are discussed. The nanostructure, fresh surface from ball milling process and fast hydrogen diffusion rate in BCC lattice structure, as well as the unique nature of maintaining original BCC metal lattice during hydrogenation result in outstanding hydrogen storage performances for Mg-based metastable nano alloys. This work may open a new sight to develop new generation hydrogen storage materials.  相似文献   

7.
Hydrogen is acclaimed to be an energy carrier of the future. Currently, it is mainly produced by fossil fuels, which release climate-changing emissions. Thermochemical cycles, represented here by the hybrid-sulfur cycle and a metal oxide based cycle, along with electrolysis of water are the most promising processes for ‘clean’ hydrogen mass production for the future. For this comparison study, both thermochemical cycles are operated by concentrated solar thermal power for multistage water splitting. The electricity required for the electrolysis is produced by a parabolic trough power plant. For each process investment, operating and hydrogen production costs were calculated on a 50 MWth scale. The goal is to point out the potential of sustainable hydrogen production using solar energy and thermochemical cycles compared to commercial electrolysis. A sensitivity analysis was carried out for three different cost scenarios. As a result, hydrogen production costs ranging from 3.9–5.6 €/kg for the hybrid-sulfur cycle, 3.5–12.8 €/kg for the metal oxide based cycle and 2.1–6.8 €/kg for electrolysis were obtained.  相似文献   

8.
9.
In this study, nanoporous silicon (PS) layers have been elaborated and used for hydrogen storage. The effect of the thickness, porosity and specific surface area of porous silicon on the amount of hydrogen chemically bound to the nanoporous silicon structures is studied by Infrared spectroscopy (FTIR), cyclic voltammetry (CV), contact angle and capacitance –voltage measurements. The electrochemical characterization and hydrogen storage were carried out in a three-electrode cell, using sulfuric acid 3 M H2SO4 as electrolyte by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge. The results indicate the presence of two oxidation peaks at 0.2 V and 0.4 V on the anodic side corresponding to hydrogen desorption and a reduction peak at −0.2 V on the cathodic side corresponding to the sorption of hydrogen. Moreover, the EIS studies performed on PS electrode in 3 M H2SO4 show that the hodograph contains a semicircle at high frequency region and a line in the lower frequency zone. An equivalent circuit has been proposed; the values of the equivalent circuit elements corresponding to the experimental impedance spectra have been determined and discussed. Finally, the highest hydrogen storage in PS was 86 mAh/g. This storage capacity decreases by only 7% of the initial capacity value, after 40 cycles.  相似文献   

10.
Magnesium has been studied as a potential hydrogen storage material for several decades because of its relatively high hydrogen storage capacity, fast sorption kinetics (when doped with transition metal based additives), and abundance. This research aims to study the possibility to use waste magnesium alloys to produce good quality MgH2. The production costs of hydrogen storage materials is still one of the major barriers disabling scale up for mobile or stationary application. The recycling of magnesium-based waste to produce magnesium hydride will significantly contribute to the cost reduction of this material. This study focuses on the effect of different parameters such as the addition of graphite and/or Nb2O5 as well as the effect of milling time on the material hydrogenation/de-hydrogenation performances. In addition, morphology and microstructural features are also evaluated for all the investigated materials.  相似文献   

11.
The effect of thermal oxidation on the hydrogen storage properties of carbon nano-horns was investigated by gravimetric and electrochemical methods. The pristine nano-horn sample was oxidised at 673 K in air for different periods (15, 30 and 60 min) and the resulting materials were characterised. The N2 adsorption experiments reveal a marked increase in the surface area, from 267 m2 g−1, for the pristine sample, up to 1360 m2 g−1 for the sample oxidised for the 60 min period, and a reduction in the average pore diameter. The gravimetric investigation, conducted at low temperature (77 K) showed an increase in the hydrogen storage, from 0.75 wt% for the pristine sample up to 2.60 wt% for the oxidised material. Reproducible and stable hydrogen storage was found for all the samples examined apart from the sample oxidised for 60 min. For the latter, a decrease in the amount of hydrogen stored between the first and second cycles was found. Electrochemical loading of hydrogen in the samples was performed at room temperature (298 K) in alkaline solution by the galvanostatic charge/discharge technique. The results obtained here however show a much lower hydrogen storage level by the samples as compared to the gas storage method, with a maximum value of 0.124 wt% H2 and with very little dependence on the thermal oxidation treatment.  相似文献   

12.
Zirconium-titanium-based AB2 is a potential candidate for hydrogen storage alloys and NiMH battery electrodes. Machine learning (ML) has been used to discover and optimize the properties of energy-related materials, including hydrogen storage alloys. This study used ML approaches to analyze the AB2 metal hydrides dataset. The AB2 alloy is considered promising owing to its slightly high hydrogen density and commerciality. This study investigates the effect of the alloying elements on the hydrogen storage properties of the AB2 alloys, i.e., the heat of formation (ΔH), phase abundance, and hydrogen capacity. ML analysis was performed on the 314 pairs collected and data curated from the literature published during 1998–2019, comprising the chemical compositions of alloys and their hydrogen storage properties. The random forest model excellently predicts all hydrogen storage properties for the dataset. Ni provided the most contribution to the change in the enthalpy of the hydride formation but reduced the hydrogen content. Other elements, such as Cr, contribute strongly to the formation of the C14-type Laves phase. Mn significantly affects the hydrogen storage capacity. This study is expected to guide further experimental work to optimize the phase structure of AB2 and its hydrogen sorption properties.  相似文献   

13.
Effects of CeO2 additive to Fe-based mixed oxide mediums with Rh and ZrO2 for chemical hydrogen storage were investigated in terms of stability and reactivity of the mediums in water splitting oxidation with repeated redox cycles. The mediums with CeO2 content ranging from 0 to 30 wt% were prepared by co-precipitation method using urea solution as a precipitant. The hydrogen storage and release properties were investigated during repeated isothermal redox cycles at 823 K for reduction with hydrogen and 623 K for oxidation with water vapor under atmospheric pressure. The amount of hydrogen produced by the mediums, both with and without CeO2, was maintained at an almost constant level over ten repeated redox cycles. However, the oxidation rates of the mediums without CeO2 were decreased during repeated redox cycles while that increased with increasing CeO2 contents. Especially, the mediums added with 30 wt% of CeO2 (FRZC-30) showed high activity and stability for ten redox cycles, the degree of hydrogen storage was almost maintained ca. 1.9 wt% on the basis of total amount of the medium.  相似文献   

14.
The behaviour of an iron oxide sample (Fe2O3) during successive reduction–oxidation cycles (steam–iron process) has been investigated by means of a thermobalance system acting as a differential reactor.The Johnson–Mehl–Avrami–Kolmogorov (JMAK) model, based on nucleation and growth mechanisms, has been used to describe the individual reoxidation processes as well as to predict the stability of the oxide after a high number of redox cycles.The effect of temperature, steam partial pressure and oxidation length has been discussed.The experimental results, as well as the parameters for the JMAK model, show that there is no significant effect of the temperature and the steam partial pressure used in the oxidation stages on the behaviour of the subsequent cycles (taking apart the first one). This conclusion applies also to the length of the oxidation period, if for such variable a value above a given threshold is used, which could be theoretically foreseen.  相似文献   

15.
The viability of the photocatalytic hydrogen production is closely related to the performance and long term stability of the photocatalyst. In this work rGO/TiO2 composites have been synthetized with graphene oxide (GO) ratios from 1% to 10% and experimentally assessed towards hydrogen generation from methanol solutions. The performance of the composite with 2% of rGO (2 GT) has been compared to bare TiO2 working with 20% volume methanol solution. The hydrogen production initial rate showed similar values with both photocatalysts decreasing after about 24 h. Further analysis of the photocatalytic process at longer times showed the negative influence of hydrogen accumulation in the reaction system. Thus, an experimental procedure with argon purge was developed and the behavior of TiO2 and 2 GT photocatalysts was compared. It is concluded that TiO2 keeps its activity after 8 operation cycles while 2 GT performance reduces progressively. This can be attributed to the further reduction of GO and the increase of defects in its structure.  相似文献   

16.
This study deals with solar hydrogen production from the two-step iron oxide thermochemical cycle (Fe3O4/FeO). This cycle involves the endothermic solar-driven reduction of the metal oxide (magnetite) at high temperature followed by the exothermic steam hydrolysis of the reduced metal oxide (wustite) for hydrogen generation. Thermodynamic and experimental investigations have been performed to quantify the performances of this cycle for hydrogen production. High-temperature decomposition reaction (metal oxide reduction) was performed in a solar reactor set at the focus of a laboratory-scale solar furnace. The operating conditions for obtaining the complete reduction of magnetite into wustite were defined. An inert atmosphere is required to prevent re-oxidation of Fe(II) oxide during quenching. The water-splitting reaction with iron(II) oxide producing hydrogen was studied to determine the chemical kinetics, and the influence of temperature and particles size on the chemical conversion. A conversion of 83% was obtained for the hydrolysis reaction of non-stoichiometric solar wustite Fe(1−y)O at 575 °C.  相似文献   

17.
Graphene oxide (GO) wrapped transition metal oxide composite materials were synthesized by a very simple route without any additional agents and the hydrogen adsorption properties of the materials were investigated. The morphologies of GO/V2O5 and GO/TiO2 were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that single- or few-layered GO sheets wrapped throughout the V2O5 and TiO2 particles. According to X-ray photoelectron spectroscopy (XPS), the C–OH species of GO and the surface-adsorbed oxygen of the transition metal oxide bond together via a dehydration reaction. The wrapping phenomenon of GO causes the enhancement of hydrogen storage capacity at liquid nitrogen temperature (77 K) compared with those of the pristine transition metal oxides and GO. The enhancement of hydrogen storage capacity of GO-wrapped transition metal oxide composite materials results from the existence of interspaces between the transition metal oxide particles and the thin GO layers.  相似文献   

18.
The evolution of crystal structure and chemical state of the V-based hydrogen storage alloy (Ti0.32Cr0.46V0.22)96Mn4 during hydrogen absorption/desorption cycling was examined by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Reasons for the degradation in cycling capacity of the alloy are presented and discussed. One reason is the continuous reduction of the V-based cell volume during cycling, which cannot hold further hydrogen atoms. The decrease in cycling capacity can also be attributed to the oxidation of Ti, V, and Cr elements during cycling.  相似文献   

19.
MgH2-based hydrogen storage materials are promising candidates for solid-state hydrogen storage allowing efficient thermal management in energy systems integrating metal hydride hydrogen store with a solid oxide fuel cell (SOFC) providing dissipated heat at temperatures between 400 and 600 °C. Recently, we have shown that graphite-modified composite of TiH2 and MgH2 prepared by high-energy reactive ball milling in hydrogen (HRBM), demonstrates a high reversible gravimetric H storage capacity exceeding 5 wt % H, fast hydrogenation/dehydrogenation kinetics and excellent cycle stability. In present study, 0.9 MgH2 + 0.1 TiH2 +5 wt %C nanocomposite with a maximum hydrogen storage capacity of 6.3 wt% H was prepared by HRBM preceded by a short homogenizing pre-milling in inert gas. 300 g of the composite was loaded into a storage tank accommodating an air-heated stainless steel metal hydride (MH) container equipped with transversal internal (copper) and external (aluminium) fins. Tests of the tank were carried out in a temperature range from 150 °C (H2 absorption) to 370 °C (H2 desorption) and showed its ability to deliver up to 185 NL H2 corresponding to a reversible H storage capacity of the MH material of appr. 5 wt% H. No significant deterioration of the reversible H storage capacity was observed during 20 heating/cooling H2 discharge/charge cycles. It was found that H2 desorption performance can be tailored by selecting appropriate thermal management conditions and an optimal operational regime has been proposed.  相似文献   

20.
Hydrogen-based economy has a great potential for addressing the world's environmental concerns by using hydrogen as its future energy carrier. Hydrogen can be stored in gaseous, liquid and solid-state form, but among all solid-state hydrogen storage materials (metal hydrides) have the highest energy density. However, hydrogen accessibility is a challenging step in metal hydride-based materials. To improve the hydrogen storage kinetics, effects of functionalized catalysts/dopants on metal atoms have been extensively studied. The nanostructuring of metal hydrides is a new focus and has enhanced hydrogen storage properties by allowing higher surface area and thus reversibility, hydrogen storage density, faster and tunable kinetics, lower absorption and desorption temperatures, and durability. The effect of incorporating nanoparticles of carbon-based materials (graphene, C60, carbon nanotubes (CNTs), carbon black, and carbon aerogel) showed improved hydrogen storage characteristics of metal hydrides. In this critical review, the effects of various carbon-based materials, catalysts, and dopants are summarized in terms of hydrogen-storage capacity and kinetics. This review also highlights the effects of carbon nanomaterials on metal hydrides along with advanced synthesis routes, and analysis techniques to explore the effects of encapsulated metal hydrides and carbon particles. In addition, effects of carbon composites in polymeric composites for improved hydrogen storage properties in solid-state forms, and new characterization techniques are also discussed. As is known, the nanomaterials have extremely higher surface area (100–1000 time more surface area in m2/g) when compared to the bulk scale materials; thus, hydrogen absorption and desorption can be tuned in nanoscale structures for various industrial applications. The nanoscale tailoring of metal hydrides with carbon materials is a promising strategy for the next generation of solid-state hydrogen storage systems for different industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号