首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y-doped SrTiO3 was synthesized via solid-state reaction. The effects of Y-doping on the sinterability and the electrical conductivity of YxSr1−xTiO3 were investigated. Y-doping can increase the sintering activity and the electrical conductivity of SrTiO3 when yttrium amount is less than 0.09 in YxSr1−xTiO3. Excessive yttrium will cause the generation of an insulating phase Y2Ti2O7, which impedes the densification process and decreases the electrical conductivity of YxSr1−xTiO3 material. With the increased temperature, the electrical conductivity of Y-doped SrTiO3 increases first and then decreases gradually, showing a mixed conduction behavior of semi-conductors and metals. The optimized Y0.09Sr0.91TiO3 possesses an electrical conductivity on the order of 32.5–195.8 S cm−1 in the temperature range of 25–1000 °C and being 73.7 S cm−1 at 800 °C in forming gas. The thermal cycling in air does not remarkably affect the electrical conductivity and the conduction behavior of Y0.09Sr0.91TiO3 at high temperatures. Y0.09Sr0.91TiO3 displays a relatively stable electrical conductivity at different oxygen partial pressures and excellent chemical compatibility with YSZ at temperatures lower than 1300 °C.  相似文献   

2.
The perovskite-type oxides, having a general formula ABO3, are promising candidates for anode materials in solid oxide fuel cells. In particular, doped SrTiO3 based perovskites are potential mixed ionic-electronic conductors and they are known to have excellent thermal and chemical stability along with carbon and sulfur tolerance. In this work, DyxSr1-xTiO3-δ system with x = 0.03, 0.05, 0.08 and 0.10 is studied to understand the influence of Dy content on its structural and electrical behavior. Electrochemical properties are measured, both in air and hydrogen atmosphere, and structural characterizations are performed before and after electrochemical tests and compared each other to study the stability. Results show that DyxSr1-xTiO3-δ powders with x ≤ 0.05, are single phase, while for x ≥ 0.08 a small amount of secondary phases is formed. In air, the conductivity is predominantly mixed ionic-electronic type for x ≤ 0.05, becoming ionic for x ≥ 0.08. It is observed that conductivity, for each composition, increases passing from air to hydrogen and activation energy decreases. Dy0.05Sr0.95TiO3-δ shows the highest conductivity in air whereas Dy0.08Sr0.92TiO3-δ in H2 atmosphere. Degradation observed by XRD is negligible for x ≤ 0.05 but increases with higher Dy content.  相似文献   

3.
Series of single-phase materials with assumed formula SrTi1?xCrxO3 (where x = 0, 1, 4, 6 mol.%) were obtained by sol-gel method. The structure and microstructure of materials were characterised by X-ray diffraction and scanning electron microscopy methods. Moreover, the study of electrical properties and evaluation of chemical stability in CO2/H2O atmosphere was performed by electrochemical impedance spectroscopy and thermogravimery methods, respectively. The possibility of participation of Cr-doped strontium titanate in oxidation–reduction processes was analysed by temperature-programed reduction (TPR) and temperature-programed oxidation (TPOx) measurements. The changes of lattice parameters together with XPS analysis, the Seebeck coefficient measurements results and TPR profiles obtained for SrTi1?xCrxO3 materials prove the presence of chromium on +3 and +6 oxidation stages. Thus, chromium can be treated as both acceptor- and donor-type dopant in the SrTiO3 structure. The Cr3+/Cr6+ ratio strongly affects the electrical properties, as the change of conduction mechanism was observed. The results of performed stability test clearly indicate that incorporation of chromium into SrTiO3 structure results with decrease of chemical stability in CO2 atmosphere.  相似文献   

4.
In the present work the structural and electrical properties of samarium-doped barium cerate perovskites of BaCe1−xSmxO3−δ formula (with x = 0–0.2), prepared by following the solid state reaction method, are investigated. The crystal structure and microstructure of the samples is determined by employing the techniques of X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). According to the XRD analysis at 0 ≤ x ≤ 0.2 the formed continuous series of BaCe1−xSmxO3−δ solid solutions have the structure of cubic perovskite with orthorhombic distortions. It was found that the relative density of the samples is ∼87% for 0.02 < x < 0.05 and ∼94% for 0.05 < x < 0.25. It was also found that the highest conductivity is observed for x = 0.15. Finally, the thermal expansion of BaCe1−xSmxO3−δ (x = 0–0.2) is studied and the thermal expansion coefficients for the high temperature region are calculated.  相似文献   

5.
Strontium titanate nanoparticles have been synthesized using a combination of sol-precipitation and hydrothermal techniques for subsequent testing as an anode material for lithium-ion batteries. The potentials associated with lithiation are 0.105 V and 0.070 V vs. Li/Li+ and 0.095 V and 0.142 V vs. Li/Li+ during de-lithiation. These potentials are significantly lower than the 1.0 V to 1.5 V vs. Li/Li+ typically reported in the literature for titanates. In an attempt to improve the lithiation and de-lithiation kinetics, as well as capacity retention, SrTiO3 nanoparticles were platinized using a photoinduced reduction of chloroplatinic acid. No significant changes in the morphology or crystal structure of the platinized nanoparticles were observed as a result of the reduction reaction. The voltage profile, charge and discharge kinetics, and cyclability of the platinized SrTiO3 nanoparticles are compared to that of the non-platinized SrTiO3 nanoparticles.  相似文献   

6.
Donor-substituted SrTiO3 ceramic materials were investigated as the anodes of solid oxide fuel cells (SOFCs). Sr0.89Y0.07TiO3−δ (SYT) samples with good electrical conductivity and redox stability were prepared. The thermal and chemical expansions of SYT are both compatible with YSZ electrolyte. Half cells consisting of a flat anode substrate and an electrolyte layer with outer dimensions of 5 cm × 5 cm were fabricated, Ni particles were infiltrated on the pore walls within the ceramic anode framework, and the redox stability of the half cell was tested by He leakage tests after redox cycling. Ti diffusion but no Sr migration was found between the anode and electrolyte layers. Sr0.895Y0.07TixOδ (x = 1.00-1.20)-YSZ composites with a volume ratio 2:1 were prepared to investigate the influences of this interdiffusion between YSZ and SYT materials. The results indicate that the conductivity of SYT decreases because of the Ti diffusion, and a small amount of Ti excess can solve this problem.  相似文献   

7.
This paper describes the potential of solution combustion synthesis (SCS) method for preparing Ce0.6Mn0.3Fe0.1O2 (CMF) as the anode material for solid oxide fuel cells (SOFC). The stability, crystallinity, morphology, and surface area of the products were depended on the fuel ratio used in SCS as investigated by TGA, XRD, SEM, and BET, which correspondingly influenced their electrochemical properties. The SCS-derived products were directly used for preparing anodes by sintering the screen-printed powders on the electrolyte membrane, and were evaluated from power generation performance, which were compared with the conventional solid-state-reaction (SSR) sample. Significantly, under configuration of the cell of CMF/La0.8Sr0.2Ga0.8Mg0.15Co0.05O3/Sm0.5Sr0.5CoO3 using humidified hydrogen gas as a fuel and O2 as an oxidizing agent, the maximum power densities obtained were 1.23 W/cm2 at 1000 °C for the SCS product (CMF1) obtained at ? = 0.5. This value was higher than 1.09 W/cm2 for the SSR-derived sample under the same evaluation conditions. The results appealed benefits of SCS method for preparing CMF as the anode material with high power generation performance for SOFC, due to its large surface area and nanosized grains, in which fuel ratio was a key parameter for its synthesis.  相似文献   

8.
The effects of La- and Co-doping into SrTiO3 perovskite oxides on their phase structure, electrical conductivity, ionic conductivity and oxygen vacancy concentration have been investigated. The solid solution limits of La in LaxSr1 − xTiO3 − δ and Co in La0.3Sr0.7CoyTi1 − yO3 − δ are about 40 mol% and 7 mol%, respectively, at 1500 °C. The incorporation of La decreases the band gap and thus increases the electrical conductivity of SrTiO3 remarkably. La0.3Sr0.7TiO3 − δ shows an electrical conductivity of 247 S/cm at 700 °C. Co-doping into La0.3Sr0.7TiO3 − δ increases the oxygen vacancy concentration and decreases the migration energy for oxygen ions, leading to a significant increase in ionic conductivity but at the expense of some electrical conductivity. The electrical and ionic conductivities of La0.3Sr0.7Co0.07Ti0.93O3 − δ are 63 S/cm and 6 × 10−3 S/cm, respectively, at 700 °C. Both La0.3Sr0.7TiO3 − δ and La0.3Sr0.7Co0.07Ti0.93O3 − δ show relatively stable electrical conductivities under oxygen partial pressure of 10−14–10−19 atm at 800 °C. These properties make La0.3Sr0.7Co0.07Ti0.93O3 − δ a promising anode candidate for solid oxide fuel cells.  相似文献   

9.
Tetragonal perovskite phase Ce0.9Ca0.1AlO2.95 + x was obtained for the first time. Such phase, containing cerium in the oxidation state of 3+, can be promising anode materials for a solid oxide fuel cells (SOFCs). Ce0.9Ca0.1AlO2.95 + х (space group I4/mcm) was synthesized by the solid-phase method at 1400°С in a nitrogen flow with using ammonium oxalate (NH4)2C2O4 to create a reducing atmosphere. Thermogravimetry results showed that Ce0.9Ca0.1AlO2.95 + x was stable to oxidation up to 500°С in air and up to 700°С in argon (partial pressure of oxygen рО2 = 10−4 bar). The thermal expansion coefficient measured by dilatometry was equal to 11.16·10−6 К−1. The temperature dependences of the electrical conductivity (for undoped phase CeAlO3 σ ≈ 1·10−3 S/cm and for doped Ce0.9Ca0.1AlO2.95 + x σ ≈ 3·10−2 S/cm at 500°С in air) were obtained by the electrochemical impedance spectroscopy measurements). The electrical conductivity of these samples at the temperatures range of 350–500°С was almost independent of the partial pressure of oxygen рО2 from 10−18 to 0.21 bar, however, there was a slight negative slope at T > 500 °C (рО2). The total ionic transport numbers measured by the EMF method were close to 1·10−3, which indicated the dominance of electronic conductivity. The measurement of the sign of the thermal-EMF showed that positive charge carriers (holes) were dominant charge carriers.  相似文献   

10.
Yttrium-substituted SrTiO3 has been considered as anode material of solid oxide fuel cells (SOFCs) substituting of the state-of-the-art Ni cermet anodes. Sr0.895Y0.07TiO3−δ (SYT) shows good electrical conductivity, compatible thermal expansion with yttria-stabilized ZrO2 (YSZ) electrolyte and reliable stability during reduction and oxidation (redox) cycles. Single cells based on SYT anode substrates were fabricated in the dimension of 50 mm × 50 mm. The cell performances were over 1.0 A cm−2 at 0.7 V and 800 °C, which already reached the practical application level. Although Ti diffusion from SYT substrates to YSZ electrolytes was observed, it did not show apparent disadvantage to the cell performance. The cells survived 200 redox cycles without obvious OCV decrease and macroscopic damage, but performance decreased due to the electronic properties of the SYT material. The influence of water partial pressure on cell performance and coking tolerance of the cells are also discussed in this study.  相似文献   

11.
We prepared nanocrystalline Ti2/3Sn1/3O2 by a coprecipitation method starting from Ti(isopropoxide)4 and SnCl4·5H2O followed by calcination at 600 °C. TEM and XRD measurements reveal crystallite sizes of about 5 nm and a crystal structure equivalent to those of TiO2 rutile and SnO2 cassiterite. The local structure was investigated with 119Sn NMR and Sn Mössbauer spectroscopy. The material was cycled with C/20 at voltages between 3.0 and 0.02 V against Li metal. Specific capacities of 300 mAh g−1 were obtained for 100 cycles with voltage profiles very similar to those of pure SnO2. Faster cycling leads to strong decrease of the capacities but after returning to C/20 the initial values are obtained.  相似文献   

12.
BaIn0.3Ti0.7O2.85 (BIT07) is an electrolyte material for SOFC due to its high ionic conductivity level and its compatibility with mixed ionic and electronic conductor (MIEC) cathode materials, such as LSCF and Nd2NiO4+δ. BIT07 is also compatible with NiO to form a cermet as anode material. In this study, the electrolyte material has been prepared by tape casting and characterised. The coupled influences of the powder grain size and the firing temperature have been investigated and optimised to yield a dense electrolyte at 1300 °C. Then anode-supported half-cells (electrolyte/anode), based on BIT07/BIT07-Ni have been prepared by tape casting and co-sintered. The composition and the microstructure of the cermet anode (BIT07 grain size, amount and nature of pore-forming agent) have been optimised to achieve an area surface resistance (ASR) value of about 0.15 Ω cm² at 700 °C under wet reducing atmosphere. The stability of the most performing anode has been followed during 500 h and the observed degradation seems to be due a loss of nickel percolation.  相似文献   

13.
The electrical and mechanical properties of Ni–YSZ cermet as the anode support of solid oxide fuel cell (SOFC) are determined by the metallic and ceramic components, respectively. We used YSZ and NiO commercial powders of the average particle size from 1 to 10 μm to fabricate Ni–YSZ cermets with different microstructures. The porosity of the cermets was also modified by the amount of carbon black addition. The distribution of each phase of cermets was analyzed with scanning electron microscopy combined with energy dispersive spectroscopy. The electrical conductivity and fracture strength of the Ni–YSZ cermets were investigated and interpreted in a view of percolation phenomena. The finer particles, either NiO or YSZ, were interlinked well by sintering and the electrical and mechanical properties of Ni–YSZ cermets were enhanced by the percolation of Ni and YSZ, respectively.  相似文献   

14.
Nano-CdSnO3 is prepared by thermal decomposition of the precursor, CdSn(OH)6 at 600 °C for 6 h in air. The material is characterized physically by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM) and selected-area electron diffraction (SAED) techniques. Nano-CdSnO3 exhibits a reversible and stable capacity of 475(±5) mAh g−1 (∼5 mol of cycleable Li per mole of CdSnO3) for at least 40 cycles between 0.005 and 1.0 V at a current rate of 0.13 C. Extensive capacity fading is found when cycling in the range 0.005-1.3 V. Cyclic voltammetry studies complement galvanostatic cycling data and reveal average discharge and charge potentials of 0.2 and 0.4 V, respectively. The proposed reaction mechanism is supported by ex situ XRD, TEM and SAED studies. The electrochemical impedance spectra taken during 1st and 10th cycle are fitted with an equivalent circuit to evaluate impedance parameters and the apparent chemical diffusion coefficient (DLi+) of Li. The bulk impedance, Rb, dominates at low voltages (≤0.25 V), whereas the combined surface film and charge-transfer impedance (R(sf+ct)) and the Warburg impedance dominate at higher voltages, ≥0.25 V. The DLi+ is in the range of (0.5-0.9) × 10−13 cm2 s−1 at V = 0.5-1.0 V during the 10th cycle.  相似文献   

15.
The carbon coated monoclinic Li3V2(PO4)3 (LVP/C) powder is successfully synthesized by a carbothermal reduction method using crystal sugar as the carbon source. Its structure and physicochemical properties are investigated using X-ray diffraction (XRD), scanning electron microscopy, high-resolution transmission electron microscopy and electrochemical methods. The LVP/C electrode exhibits stable reversible capacities of 203 and 102 mAh g−1 in the potential ranges of 3.0-0.0 V and 3.0-1.0 V versus Li+/Li, respectively. It is identified that the insertion/extraction of Li+ undergoes a series of two-phase transition processes between 3.0 and 1.6 V and a single phase process between 1.6 and 0.0 V. The ex situ XRD patterns of the electrodes at various lithiated states indicate that the monoclinic structure can still be retained during charge-discharge process and the insertion/deinsertion of lithium ions occur reversibly, which provides an excellent cycling stability with high energy efficiency.  相似文献   

16.
This study demonstrates the significant impact of Cr on the electronic conductivity of a LaNi0.6Fe0.4O3 (LNF) porous cathode layer at 800 °C. Vapor transport of Cr-species, originating from a porous metallic foam, and subsequent reaction with LNF, results in a decrease of the electronic conductivity of the LNF-layer. Cr has been detected throughout the entire cross-section of a 16 μm thick LNF layer, while Ni, besides its compositional distribution in the LNF layer, has also been found in enriched spots forming Ni-rich metal oxide crystals. Transmission electron microscopy revealed that Cr is gradually incorporated into the LNF-grains, while Ni is proportionally expelled. Electron diffraction performed in the center of a sliced grain showed the initial rhombohedral crystal structure of LNF, whereas diffraction performed close to the edge of the grain revealed the orthorhombic perovskite crystal structure, indicating a Cr-enriched perovskite phase. Progressive Cr deposition and penetration into the LNF grains and necks explains the electronic conductivity deterioration. The impact of Cr-poisoning on the electronic conductivity of the LNF porous layer is considerably smaller at 600 °C than at 800 °C.  相似文献   

17.
Microstructural features and physical properties of the anodes crucially affect the electrochemical performance of anode-supported solid oxide fuel cells (SOFCs). This paper evaluated the microstructural characteristics and properties including porosity, pore size distribution, sintering shrinkage, mechanical strength, and electrical conductivity of the SOFC anode using carbon microspheres (CMSs) as the pore-former in the fabrication of Ni/YSZ ceramic anode. CMSs with different average particle sizes (CMS1: 11.54 μm, CMS2: 4.39 μm, and CMS3: 0.27 μm) were synthesized, and then incorporated into NiO/YSZ at various volumetric blend ratios ranging from 4.4 to 44.6 vol.%. SOFC anode cermets with a desirable range of porosity (30–40%), shrinkage (15.9–17.3%), flexural strength (75.4–157.8 N), and electrical conductivity (253.5–510.7 S/cm) were obtained using approximately 4–10 vol% of CMS1, 4–20 vol.% of CMS2, and 10–34 vol.% of CMS3. In addition, the use of CMS as the pore former reduced the amount of closed pores in the anode disks from 2.05% to <1%.  相似文献   

18.
Whereas Ce0.9Sr0.1Cr0.5V0.5O3 is an active fuel cell anode catalyst for conversion of only the H2S content of 0.5% H2S-CH4 at 850 °C, inclusion of 5 wt% NiO to form a composite catalyst enabled concurrent electrochemical conversion of CH4. A fuel cell with a 0.3 mm thick YSZ membrane and Ce0.9Sr0.1Cr0.5V0.5O3 as anode catalyst had a maximum power density of 85 mW cm−2 in 0.5% H2S-CH4 at 850 °C, arising only from the electro-oxidation of H2S. Using a same thick membrane, promotion of the anode with 5 wt% NiO increased the total anode electro-oxidation activity to afford maximum power density of 100 mW cm−2 in 0.5% H2S-CH4. The same membrane provided 30 mW cm−2 in pure CH4, showing that the incremental improvement arose substantially from CH4 conversion. Performance of each anode was stable for over 12 h at maximum power output. XPS and XRD analyses showed that an increase in conductivity of Ce0.9Sr0.1Cr0.5V0.5O3 in H2S-containing environments resulted from a change in composition and structure from the tetragonal oxide to monoclinic Ce0.9Sr0.1Cr0.5V0.5(O,S)3.  相似文献   

19.
Perovskite-structure La0.75Sr0.25Cr0.5Mn0.5O3−δ (LSCM) powders were prepared using a simple combustion process. Thermal analysis was carried out on the perovskite precursor to investigate the oxide-phase formation. The structural phase of the powders was determined by X-ray diffraction. These results showed that the decomposition of the precursors occurs in a two-step reaction and temperatures higher than 1100 °C are required for these decomposition reactions. For the electrochemical characterization, LSCM anode materials and (Pr0.7Ca0.3)0.9MnO3 (PCM) cathode materials were screen-printed on two sides of dense La0.8Sr0.2Ga0.8Mg0.2O3 (LSGM) electrolyte layers prepared by tape casting with a thickness of about 600 μm, respectively. The morphology of the screen-printed La0.75Sr0.25Cr0.5Mn0.5O3−δ perovskite thick films (65 μm) was investigated by field emission scanning electron microscope and showed a porous microstructure. In addition, fuel cell tests were carried out using humidified hydrogen or ethanol stream as fuel and oxygen as oxidant. The performance of the conventional electrolyte-supported cell LSCM/LSGM/PCM while operating on humidified hydrogen was modest with a maximum power density of 165, 99 and 62 mW cm−2 at 850, 800 and 750 °C, respectively, the corresponding values for the cell while operating on ethanol stream was 160, 101 and 58 mW cm−2, respectively. Cell stability tests indicate no significant degradation in performance has been observed after 60 h of cell testing when LSCM anode was exposed to ethanol steam at 750 °C, suggesting that carbon deposition was limited during cell operation.  相似文献   

20.
Sr2Fe4/3Mo2/3O6 has been synthesized by a combustion method in air. It shows a single cubic perovskite structure after being reduced in wet H2 at 800 °C and demonstrates a metallic conducting behavior in reducing atmospheres at mediate temperatures. Its conductivity value at 800 °C in wet H2 (3% H2O) is about 16 S cm−1. This material exhibits remarkable electrochemical activity and stability in H2. Without a ceria interlayer, maximum power density (Pmax) of 547 mW cm−2 is achieved at 800 °C with wet H2 (3% H2O) as fuel and ambient air as oxidant in the single cell with the configuration of Sr2Fe4/3Mo2/3O6|La0.8Sr0.2Ga0.83Mg0.17O3 (LSGM)| La0.6Sr0.4Co0.2Fe0.8O3 (LSCF). The Pmax even increases to 595 mW cm−2 when the cell is operated at a constant current load at 800 °C for additional 15 h. This anode material also shows carbon resistance and sulfur tolerance. The Pmax is about 130 mW cm−2 in wet CH4 (3% H2O) and 472 mW cm−2 in H2 with 100 ppm H2S. The cell performance can be effectively recovered after changing the fuel gas back to H2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号